Please Note: Our name has changed! The NASA “Why” Files™ is now the NASA Science Files™ and is also known as the NASA SCI Files™.

http://scifiles.larc.nasa.gov
The Case of the Galactic Vacation lesson guide is available in electronic format through NASA Spacelink - one of NASA’s electronic resources specifically developed for the educational community. This publication and other educational products may be accessed at the following address: http://spacelink.nasa.gov/products

A PDF version of the lesson guide for NASA SCI Files™ can be found at the NASA SCI Files™ website: http://scifiles.larc.nasa.gov

The NASA Science Files™ is produced by the NASA Center for Distance Learning, a component of the Office of Education at NASA’s Langley Research Center, Hampton, VA. The NASA Center for Distance Learning is operated under cooperative agreement NCC-1-02039 with Christopher Newport University, Newport News, VA. Use of trade names does not imply endorsement by NASA.
A Lesson Guide with Activities in Mathematics, Science, and Technology

<table>
<thead>
<tr>
<th>Segment</th>
<th>Overview</th>
<th>Objectives</th>
<th>Vocabulary</th>
<th>Video Component</th>
<th>Careers</th>
<th>Resources</th>
<th>Activities and Worksheets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment 1</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Segment 2</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Segment 3</td>
<td>43</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>Segment 4</td>
<td>55</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>57</td>
<td>57</td>
</tr>
</tbody>
</table>

For additional information about the NASA SCI Files™, contact Shannon Ricles at (757) 864-5044 or s.s.ricles@larc.nasa.gov.

Production of the NASA SCI Files™ is made possible by the generous support provided by the Society of Women Engineers (SWE); Busch Gardens, Williamsburg; Hampton City Public Schools; and the NASA Langley Research Center’s Aerospace Vehicle Systems Technology Program Office.

Writer and Teacher Advisors: Shannon Ricles, Tim Hatok and Berlina Taylor.

Graphic Designer: René Peniza

Editor: Susan Hurd

Registered users of the NASA SCI Files™ may request a Society of Women Engineers (SWE) classroom mentor. For more information or to request a mentor, e-mail k.im.tholen@swe.org

Captioning provided by NEC Foundation of America

NASA SCI Files™ is a production of NASA’s Langley Research Center, Hampton, VA. All Rights Reserved. Broadcast and off-air rights are unlimited and are granted in perpetuity with the following stipulations: NASA SCI Files™ shall not be used for commercial purposes; used, in whole or in part, to endorse a commercial product; stored, in whole or in part, in a commercial database; altered electronically, mechanically, or photographically without the expressed and prior written permission of NASA. This publication is in the public domain and is not protected by copyright. Permission is not required for duplication.
Program Overview

In *The Case of the Galactic Vacation*, the tree house detectives receive an assignment to create an "out-of-this-world" vacation. With billions of places in the universe to go, the detectives have different ideas about the best destination. To begin their investigation, they go to Dr. D’s lab to learn about the solar system. After realizing that objects in space are really far apart, the tree house detectives decide that they need to learn more about how to measure distances in space. Going some distance herself, Bianca travels to Puerto Rico for an internship at the world’s largest radio telescope, Arecibo Observatory. She goes to her cousin’s 5th grade class at the Antonio Gonzalez Suarez Bilingual School in Añasco, Puerto Rico where the students and their mentors from the Society of Women Engineers (SWE) demonstrate how to measure distance in space using parallax.

The tree house detectives decide that they need to learn more about working and living in space, so they contact NASA Johnson Space Center and are able to speak with the International Space Station (ISS) Expedition Six astronaut crew. From there the detectives decide that the Moon would be a perfect place to go, and they talk with Ed Prior from NASA Langley Research Center, who explains the Moon’s unique features and its phases. The detectives continue to wonder about unusual alien environments and what is necessary to live in them. They seek the expertise of Dr. D, who helps them better understand the vast differences among the planets and other objects. Then it is off to learn about Mars, and they speak with Robert Braun with NASA Langley Research Center.

After learning that a trip to Mars could take longer than six months, the tree house detectives decide to learn more about traveling in space. They meet Dr. D at Busch Gardens in Williamsburg, Virginia to ride a few roller coasters and learn about gravity, acceleration, and weightlessness. Next stop is Starship 2040, where Mr. Wang of NASA Marshall Space Flight Center explains what tourism in space will be like in about 50 years. Now the detectives realize that no matter where they go in the solar system or galaxy, the current rocket system will not get them there and back quickly enough. They head off to speak with Dr. Franklin Chang-Diaz of NASA Johnson Space Center to learn more about plasma rockets for the future.

As the tree house detectives wind up their investigation, they call on Bianca at Arecibo to learn more about the stars and galaxies. Dr. D, who just happens to be at Arecibo, gives Bianca a visual tour of the night sky. Dr. Daniel Altschuler, Dr. Tapasi Ghosh, and Dr. Jose Alonso who conduct research at Arecibo, help the tree house detectives understand how radio telescopes work and how they are used to study the stars, planets, and other objects in the universe. After a successful internship and a great time in Puerto Rico, Bianca heads home to help the rest of the detectives wrap up their project and create an "out-of-this-world" vacation.
National Science Standards (Grades K – 4)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unifying Concepts and Processes</td>
<td></td>
</tr>
<tr>
<td>Systems, orders, and organization</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Evidence, models, and explanations</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Change, constancy, and measurement</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Form and Function</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Science as Inquiry (Content Standard A)</td>
<td></td>
</tr>
<tr>
<td>Abilities necessary to do scientific inquiry</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Understanding scientific inquiry</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Life Science (Content Standard C)</td>
<td></td>
</tr>
<tr>
<td>Organisms and their environments</td>
<td>✗ ✗</td>
</tr>
<tr>
<td>Earth and Space Science (D)</td>
<td></td>
</tr>
<tr>
<td>Properties of Earth materials</td>
<td>✗</td>
</tr>
<tr>
<td>Objects in the sky</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Changes in Earth and sky</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Science in Personal and Social Perspective (Content Standard F)</td>
<td></td>
</tr>
<tr>
<td>Personal health</td>
<td>✗</td>
</tr>
<tr>
<td>Changes in environment</td>
<td>✗ ✗</td>
</tr>
<tr>
<td>Science and technology in local challenges</td>
<td>✗ ✗</td>
</tr>
<tr>
<td>History and Nature of Science (Content Standard G)</td>
<td></td>
</tr>
<tr>
<td>Science as a human endeavor</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
</tbody>
</table>
National Science Standards (Grades 5 - 8)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unifying Concepts and Processes</td>
<td></td>
</tr>
<tr>
<td>Systems, order, and organization</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Evidence, models, and explanations</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Change, constancy, and measurement</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Form and Function</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Science as Inquiry (Content Standard A)</td>
<td></td>
</tr>
<tr>
<td>Abilities necessary to do scientific inquiry</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Understanding scientific inquiry</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Physical Science (B)</td>
<td></td>
</tr>
<tr>
<td>Properties and changes of properties in matter</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Position and motion of objects</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Transfer of energy</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Earth and Space Science (D)</td>
<td></td>
</tr>
<tr>
<td>Structure of the Earth system</td>
<td>✗</td>
</tr>
<tr>
<td>Earth's history</td>
<td>✗</td>
</tr>
<tr>
<td>Earth in the solar system</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Science and Technology (Content Standard E)</td>
<td></td>
</tr>
<tr>
<td>Abilities of technological design</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Understanding science and technology</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Science in Personal and Social Perspectives (Content Standard F)</td>
<td></td>
</tr>
<tr>
<td>Personal health</td>
<td>✗</td>
</tr>
<tr>
<td>Risks and benefits</td>
<td>✗</td>
</tr>
<tr>
<td>Science and technology in society</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>History and Nature of Science (Content Standard G)</td>
<td></td>
</tr>
<tr>
<td>Science as a human endeavor</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Nature of science</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>History of science</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Standard</td>
<td>Segment</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Number and Operations</td>
<td></td>
</tr>
<tr>
<td>Understand numbers, ways of representing numbers, relationships among numbers, and number systems.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Understand meanings of operations and how they relate to one another.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Compute fluently and make reasonable estimates.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Algebra</td>
<td></td>
</tr>
<tr>
<td>Understand patterns, relations, and functions.</td>
<td>✗ ✗ ✗</td>
</tr>
<tr>
<td>Use mathematical models to represent and understand quantitative relationships.</td>
<td>✗ ✗ ✗</td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
</tr>
<tr>
<td>Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships.</td>
<td>✗ ✗ ✗</td>
</tr>
<tr>
<td>Specify locations and describe spatial relationships by using coordinate geometry and other representational systems.</td>
<td>✗ ✗</td>
</tr>
<tr>
<td>Use visualization, spatial reasoning, and geometric modeling to solve problems.</td>
<td>✗</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>Understand measurable attributes of objects and the units, systems, and processes of measurement.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Apply appropriate techniques, tools, and formulas to determine measurements.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Data Analysis and Probability</td>
<td></td>
</tr>
<tr>
<td>Formulate questions that can be addressed with data and collect, organize, and display relevant data to answer them.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Select and use appropriate statistical methods to analyze data.</td>
<td>✗</td>
</tr>
<tr>
<td>Develop and evaluate inferences and predictions that are based on data.</td>
<td>✗</td>
</tr>
<tr>
<td>Understand and apply basic concepts of probability.</td>
<td>✗</td>
</tr>
<tr>
<td>Problem Solving</td>
<td></td>
</tr>
<tr>
<td>Build new mathematical knowledge through problem solving.</td>
<td>✗ ✗ ✗</td>
</tr>
<tr>
<td>Solve problems that arise in mathematics and in other contexts.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Apply and adapt a variety of appropriate strategies to solve problems.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Monitor and reflect on the process of mathematical problem solving.</td>
<td>✗ ✗ ✗</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Organize and consolidate mathematical thinking through communication.</td>
<td>✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>Communicate mathematical thinking coherently and clearly to peers, teachers, and others.</td>
<td>✗ ✗ ✗</td>
</tr>
</tbody>
</table>
National Mathematics Standards (Grades 3 – 5) – continued

<table>
<thead>
<tr>
<th>Standard</th>
<th>Connections</th>
<th>Representation</th>
<th>Use representations to model and interpret physical, social, and mathematical phenomena.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recognize and apply mathematics in contexts outside mathematics.</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Create and use representation to organize, record, and communicate mathematical ideas.</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Use representations to model and interpret physical, social, and mathematical phenomena.</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

International Technology Education Association
(ITEA Standards for Technology Literacy, Grades 3 – 5)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Nature of Technology</th>
<th>Technology and Society</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard 1: Students will develop an understanding of the characteristics and scope of technology.</td>
<td>Standard 4: Students will develop an understanding of the cultural, social, economic, and political effects of technology.</td>
<td>Standard 8: Students will develop an understanding of the attributes of design.</td>
</tr>
<tr>
<td></td>
<td>Standard 2: Students will develop an understanding of the core concepts of technology.</td>
<td>Standard 6: Students will develop an understanding of the role of society in the development and use of technology.</td>
<td>Standard 9: Students will develop an understanding of engineering design.</td>
</tr>
<tr>
<td></td>
<td>Standard 3: Students will develop an understanding of the relationships among technologies and the connections between technology and other fields of study.</td>
<td>Standard 7: Students will develop an understanding of the influence of technology on history.</td>
<td>Standard 10: Students will develop an understanding of the role of troubleshooting, research, and development, invention and innovation, and experimentation in problem solving.</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
International Technology Education Association
(ITEA Standards for Technology Literacy, Grades 3 – 5) – continued

<table>
<thead>
<tr>
<th>Standard</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Designed World</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 16: Students will develop an understanding of and be able to select and use energy and power technologies.</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 17: Students will develop an understanding of and be able to select and use information and communication technologies.</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Standard 18: Students will develop an understanding of and be able to select and use transportation technologies.</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

National Technology Standards (ISTE National Educational Technology Standards, Grades 3 – 5)

<table>
<thead>
<tr>
<th>Standard</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Operations and Concepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Keyboards and other common input and output devices efficiently and effectively.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Discuss common uses of technology in daily life and the advantages and disadvantages those uses provide.</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Social, Ethical, and Human Issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discuss common uses of technology in daily life and their advantages.</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Discuss basic issues related to responsible use of technology and information and describe personal consequences of inappropriate use.</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Technology Productivity Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use general purpose productivity tools and peripherals to support personal productivity, remediate skill deficits, and facilitate learning throughout the curriculum.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Use technology tools for individual and collaborative writing, communication, and publishing activities to create knowledge products for audiences inside and outside the classroom.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Technology Communication Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use technology tools for individual and collaborative writing, communication, and publishing activities to create knowledge products for audiences inside and outside the classroom.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Use telecommunication efficiently and effectively to access remote information, communicate with others in support of direct and independent learning, and pursue personal interests.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Use telecommunication and online resources to participate in collaborative problem-solving activities for the purpose of developing solutions or products for audiences inside and outside the classroom.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
National Technology Standards (ISTE National Educational Technology Standards, Grades 3 - 5) – continued

<table>
<thead>
<tr>
<th>Standard</th>
<th>Technology Research Tools</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use telecommunication and online resources to participate in collaborative problem-solving activities for the purpose of developing solutions or products for audiences inside and outside the classroom.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>Use technology resources for problem solving, self-directed learning, and extended learning activities.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>Determine when technology is useful and select the appropriate tools and technology resources to address a variety of tasks and problems.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Technology Problem-Solving and Decision-Making Tools</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use technology resources for problem solving, self-directed learning, and extended learning activities.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>Determine when technology is useful and select the appropriate tools and technology resources to address a variety of tasks and problems.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>Evaluate the accuracy, relevance, appropriateness, comprehensiveness, and bias of electronic information sources.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

National Geography Standards, Grades 3 – 5

<table>
<thead>
<tr>
<th>Standard</th>
<th>The World in Spatial Terms</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard 1: How to use maps and other graphic representations, tools, and technologies to acquire, process, and report information from a spatial perspective.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Places and Regions</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard 4: The physical and human characteristics of places</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>Standard 6: People create regions to interpret Earth’s complexity</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>The Uses of Geography</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard 10: The characteristics, distributions, and complexity of Earth’s cultural mosaics</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
The tree house detectives receive an assignment to create an “out-of-this-world” vacation. With billions of places in the universe to go, the detectives have different ideas about the best destination. They finally agree to divide into teams and research three different “docks-of-call,” the Moon, Mars, and a distant star. They head to Dr. D’s lab to learn a little more about the planets in our solar system and discover that objects in the universe are really far apart. Going some distance herself, Bianca travels to Puerto Rico for an internship at the largest radio telescope in the world, Arecibo Observatory. She promises to do research for the assignment while there, and her first task is to get some help from her cousin’s class at the Antonio Gonzalez Suarez Bilingual School in Añasco, Puerto Rico. Ms. Alice Acevedo’s class shows the tree house detectives how to measure distances in space using parallax. Mentors from the Society of Women Engineers (SWE) also assist the class.
Objectives

The students will

• identify and describe objects in our solar system.

• create a scale model of our solar system using astronomical units.

• understand how astronomers measure distance in space.

Vocabulary

inner planets—the four solid, rocky planets closest to the Sun—Mercury, Venus, Earth, and Mars

light-year—a unit of length in astronomy equal to the distance that light travels in one year or 9,458,000,000,000 kilometers

outer planets—the five planets farthest from the Sun—Jupiter, Saturn, Uranus, Neptune, Pluto

parallax—the apparent shift in position of an object as seen from two different points not on a straight line with the object

planet—a heavenly body other than a comet, asteroid, or satellite that travels in orbit around the Sun; also such a body orbiting another star

solar system—a star with the group of heavenly bodies that revolve around it; especially the Sun with the planets, asteroids, comets, and meteors that orbit it

Video Component

Implementation Strategy

The NASA SCI Files™ is designed to enhance and enrich existing curriculum. Two to three days of class time are suggested for each segment to fully use video, resources, activities, and web site.

Before Viewing

1. Prior to viewing Segment 1 of The Case of the Galactic Vacation, read the program overview (p. 5) to the students. List and discuss questions and preconceptions that students may have about the solar system, stars, and how to measure distances in space.

2. Record a list of issues and questions that the students want answered in the program. Determine why it is important to define the problem before beginning. From this list, guide students to create a class or team list of three issues and four questions that will help them to better understand the problem. The following tools are available in the educator area. To locate them, click on the educator’s menu bar, then click on “Tools” and then “Instructional Tools.” You will find them listed under the “Problem-Based Learning” tab.

 Problem Board—Printable form to create student or class K-W-L chart

 Guiding Questions for Problem Solving—Questions for students to use while conducting research

 Problem Log & Rubric—Printable log for students with the stages of the problem-solving process

 Brainstorming Map—Graphic representation of key concepts and their relationships

 The Scientific Method and Flow Chart—Chart that describes the scientific method process
3. Focus Questions—Questions at the beginning of each segment that help students focus on a reason for viewing and can be printed ahead of time from the educator’s area of the web site in the “Activities/Worksheet” section under “Worksheets.” Students should copy these questions into their science journals prior to viewing the program. Encourage students to take notes while viewing the program to answer the questions. An icon will appear when the answer is near.

4. What’s Up? Questions—Questions at the end of the segment help students predict what actions the tree house detectives should take next in the investigation process and how the information learned will affect the case. These questions can be printed from the educator’s area of the web site in the “Activities/Worksheet” section under “Worksheets.”

View Segment 1 of the Video

For optimal educational benefit, view *The Case of the Galactic Vacation* in 15-minute segments and not in its entirety. If you are viewing a taped copy of the program, you may want to stop the video when the Focus Question icon appears to allow students time to answer the question.

Careers
- astronomer
- aerospace worker
- mathematician
- physicist
- planetologist

After Viewing

1. Have students reflect on the "What's Up?" questions asked at the end of the segment.

2. Discuss the Focus Questions.

3. Students should work in groups or as a class to discuss and list what they know about our solar system, stars, and distances in space. Have the students conduct research on the solar system and brainstorm which planet the tree house detectives should choose as their destination. As a class, reach a consensus on what additional information is needed. Have the students conduct independent research or provide students with the information needed.

4. Have the students complete Action Plans, which can be printed from the educator area or the tree house’s “Problem Board” area in the “Problem-Solving Tools” section of the web site for the current online investigation. Students should then conduct independent or group research by using books and internet sites noted in the “Research Rack” section of the “Problem Board” area in the tree house. Educators can also search for resources by topic, episode, and media type under the Educator’s main menu option Resources.

5. Choose activities from the educator guide and web site to reinforce concepts discussed in the segment. The variety of activities is designed to enrich and enhance your curriculum. Activities may also be used to help students "solve" the problem along with the tree house detectives.

6. Have the students work individually, in pairs, or in small groups on the Problem-Based Learning (PBL) activity on the NASA SCI Files™ web site. To locate the PBL activity, click on the tree house and then the “Problem Board.” Choose the “2002-2003 Season” and click on Suspicious Sickness.

- To begin the PBL activity, read the scenario (Here’s the Situation) to the students.
- Read and discuss the various roles involved in the investigation.
- Print the criteria for the investigation and distribute.
- Have students use the “Research Rack” and the “Problem-Solving Tools” located on the bottom menu bar for the PBL activity. The “Research Rack” is also located in the tree house.

7. Having students reflect in their journals what they have learned from this segment and from their own experimentation and research is one way to assess the students. In the beginning, students may have difficulty reflecting. To help students, give them specific questions to reflect upon that are related to the concepts.

8. Have students complete a Reflection Journal, which can be found in the Problem-Solving Tools section of the online PBL investigation or in the Instructional Tools section of the Educator’s area.

9. The NASA SCI Files™ web site provides educators with general and specific evaluation tools for cooperative learning, scientific investigation, and the problem-solving process.
Resources (additional resources located on web site)

Books

Video

Eyewitness—*Planets* (1997), ASIN: 0789421488

Web Sites

NASA Spacelink—Where to Find Information on the Solar System and Universe

With all the resources available at NASA, finding specific information related to the solar system can be a daunting task. You know that you won't find information on an asteroid in the same place you'll find the diameter of Jupiter. So where's the best place to look? The answer is NASA Spacelink! Spacelink has categorized the different areas of space science to make information easier to locate. http://spacelink.nasa.gov/focus/Articles/010_Solar_System/

Our Solar System

Come along and explore our amazing solar system. Here, students will journey far into space to learn interesting facts about planets, objects in our solar system, and even how to become an astronaut! http://www.montana.edu/4teachers/instcomp/hunts/science/Solar/SpaceHunt.html

Kids Astronomy

Great web site created for both the student and the educator. Learn how big the universe is by clicking your way through the universe in powers of ten. http://www.KidsAstronomy.com/
Activities and Worksheets

In the Guide

Scaling the Solar System
Create a model demonstrating the scale distance of the solar system by using Astronomical Units (AU).

Planning the Planets
Use the Planetary Data Chart to learn more about the planets and create a Venn Diagram.

A Long Walk in the Dark
Calculate the time it will take you to walk, drive, and fly to the Moon and planets.

What a Parallax!
Activity to learn how astronomers measure the distance to stars.

Answer Key

On the Web

Planet to Planet
Create a model of the solar system to learn the order of the planets from the Sun.

Solar System 3-D Puzzle
Create an eight-cube paper puzzle of the solar system.
Scaling the Solar System

Purpose
To understand an astronomical unit
Create a model demonstrating the scale distances of the solar system by using astronomical units.

Teacher's Note
It is important to realize that the sizes of the planets are not to scale. Jupiter's diameter is about 63 times that of Pluto, and the Sun's diameter is about 10 times that of Jupiter. On the scale of 1 AU = 10 cm, the Sun would only be 1 mm in diameter, and the planets would be mere dots.

Background
Astronomers have chosen a unit to measure distances in space called the astronomical unit (AU). The length of an astronomical unit is the average distance of the Earth from the Sun. The distance is about 93,000,000 miles (mi) or 150,000,000 kilometers (km). Using the 150,000,000 km as one astronomical unit, create a model solar system.

Procedure
1. Determine the color bead to represent each planet and the asteroid belt and record in chart below. Save a yellow bead to represent the Sun.
2. Complete the chart to determine each planet's astronomical unit.
3. Using the scale of 1 AU = 10 centimeters (cm), determine the distance in cm and complete the chart. Multiply the AU by 10 cm.
4. Attach the Sun bead on one end of the string and secure with a knot.
5. Use a meter stick and measure the distance from the Sun determined in the chart for Mercury and mark.
6. Slide the bead onto the string to the mark and secure with a knot.
7. Repeat for each of the other planets and the asteroid belt.

Extension
1. Create a solar system in the classroom and/or on the playground by using a different scale for the AU of each planet.
2. Conduct research to learn more about asteroids and how they differ from planets.

Conclusion
1. Why do astronomers need astronomical units to measure distances in space?
2. Which planets are the inner planets? Outer planets?
3. What separates the inner planets from the outer planets?
4. Explain a scale model and why it was useful.

Materials
- 4.5-m string
- meter sticks
- beads of 11 different colors
- small cup to hold beads
- marker

AU Chart

<table>
<thead>
<tr>
<th>Planet</th>
<th>Bead Color</th>
<th>Distance in million of km (Average)</th>
<th>÷ 150</th>
<th>Relative Distance (AU)</th>
<th>Rounded to the nearest tenth</th>
<th>Distance in cm (AU) x 10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td></td>
<td>57</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td></td>
<td>108</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td></td>
<td>150</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td>228</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteroid Belt</td>
<td></td>
<td>420</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td>778</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td>1,427</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td></td>
<td>2,280</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td></td>
<td>4,497</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto</td>
<td></td>
<td>5,900</td>
<td>÷ 150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Planning the Planets

Planetary Data Chart

<table>
<thead>
<tr>
<th>Planet</th>
<th>Distance from the Earth in millions of km (avg)</th>
<th>Distance from the Sun in millions of km</th>
<th>Diameter</th>
<th>Mass Ratio with Earth</th>
<th>Temperature</th>
<th>Gravity</th>
<th>Length of Day</th>
<th>Length of Year</th>
<th>Satellites</th>
<th>Tilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>91.7</td>
<td>57.9</td>
<td>4,880 km</td>
<td>0.055</td>
<td>-170°–350 °C</td>
<td>0.39</td>
<td>59 days</td>
<td>88 days</td>
<td>0</td>
<td>0°</td>
</tr>
<tr>
<td>Venus</td>
<td>41.4</td>
<td>108.2</td>
<td>12,104 km</td>
<td>0.815</td>
<td>465°C surface</td>
<td>0.91</td>
<td>243 days</td>
<td>225 days</td>
<td>0</td>
<td>177.3°</td>
</tr>
<tr>
<td>Earth</td>
<td>0</td>
<td>149.6</td>
<td>12,576 km</td>
<td>1.0</td>
<td>15° C avg. surface</td>
<td>1</td>
<td>23 hrs, 56 min</td>
<td>365 days</td>
<td>1</td>
<td>23.5°</td>
</tr>
<tr>
<td>Mars</td>
<td>78.3</td>
<td>227.9</td>
<td>6,787 km</td>
<td>0.11</td>
<td>-23°C avg surface</td>
<td>0.38</td>
<td>24 hrs, 37 min</td>
<td>687 days</td>
<td>2</td>
<td>24°</td>
</tr>
<tr>
<td>Jupiter</td>
<td>628.7</td>
<td>778.3</td>
<td>142,800 km</td>
<td>318</td>
<td>-150° C at cloud tops</td>
<td>2.60</td>
<td>9 hrs, 55 min</td>
<td>11.9 years</td>
<td>28</td>
<td>3.1°</td>
</tr>
<tr>
<td>Saturn</td>
<td>1,277</td>
<td>1,427</td>
<td>120,600 km</td>
<td>95.2</td>
<td>-180° C at cloud tops</td>
<td>1.07</td>
<td>10 hrs, 42 min</td>
<td>29.5 years</td>
<td>30</td>
<td>26.7°</td>
</tr>
<tr>
<td>Uranus</td>
<td>2,721</td>
<td>2,870</td>
<td>51,300 km</td>
<td>15</td>
<td>-210° C at cloud tops</td>
<td>0.90</td>
<td>17 hrs, 12 min</td>
<td>84 years</td>
<td>21</td>
<td>97.9°</td>
</tr>
<tr>
<td>Neptune</td>
<td>4,347</td>
<td>4,497</td>
<td>49,100 km</td>
<td>17</td>
<td>-220° C at cloud tops</td>
<td>1.15</td>
<td>16 hrs, 6 min</td>
<td>165 years</td>
<td>8</td>
<td>29.6°</td>
</tr>
<tr>
<td>Pluto</td>
<td>5,750</td>
<td>5,900</td>
<td>2,200 km</td>
<td>0.002</td>
<td>-220° C avg. surface</td>
<td>0.03</td>
<td>6 days, 9 hrs</td>
<td>248 years</td>
<td>1</td>
<td>118°</td>
</tr>
</tbody>
</table>

Using the Planetary Data Chart, create bar graphs in your science journal showing:

- the number of satellites each planet has.
- the diameter of each planet.
- your choice.
Planning the Planets (concluded)

Venn Diagram

Use the Planetary Data Chart to complete the Venn diagram.

- Tilt is less than 30°
- Has Satellites
- Larger than Earth
- Gravity is greater than 1
- Has Satellites

The Case of the Galactic Vacation

EG-2003-05-07-LARC
A Long Walk in the Dark

Purpose
To determine the length of time it takes to walk, drive, and fly to the Moon and planets

Procedure
1. Using the average distance from Earth, calculate the number of hours it will take you to walk, drive, and fly to the Moon and the other planets.
2. Convert the number of hours into years by using 24 hours in a solar day and complete the chart below. The first one is done for you.

Moon Example:

\[
\begin{align*}
384,000 \text{ km} & \div 3.6 \text{ km/h} = 106,667 \text{ hours} \\
365 \text{ days} \times 24 \text{ hours} & = 8,760 \text{ hours per year} \\
106,667 \text{ hours} & \div 8,760 \text{ hours per year} = 12.17 \text{ years} \\
\text{Round to the nearest year} & = 12 \text{ years}
\end{align*}
\]

3. Calculate the age you will be if you left today and flew to the Moon and each planet. Your current age + the number of years = future age

<table>
<thead>
<tr>
<th>Heavenly Body</th>
<th>Average Distance</th>
<th>Walking 3.6 km/h</th>
<th>Walking Years</th>
<th>Driving 80 km/h</th>
<th>Driving Years</th>
<th>Flying 1,436 km/h</th>
<th>Flying Years</th>
<th>My Future Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>384,000 km</td>
<td>106,667 hours</td>
<td>12 years</td>
<td>4,800 hours</td>
<td>0.5 years</td>
<td>267 hours</td>
<td>0.03 years</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>92,000,000 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td>41,000,000 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>78,000,000 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>629,000,000 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>1,227,000,000 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td>2,721,000,000 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td>4,347,000,000 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto</td>
<td>5,750,000,000 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion:

1. With the distances between planets being so great, will it be possible to travel to them in the future? Why or why not?
2. Which planet would you like to visit? Why?
What a Parallax!

Purpose
To understand how astronomers measure the distance to stars

Teacher Prep
If necessary, work with students to familiarize them with how to use a protractor.

Procedure
1. Using the red marker, color one end of the rope approximately 5 cm. This will be end “A.”
2. Using the blue marker, color the opposite end of the rope approximately 5 cm. This will be end “B.”
3. In a large open area, lay the rope in a straight line. This will be your baseline.
4. Place a large object, such as a chair, some distance away from the rope. A tree, flagpole, or shrub may also be used, but the object must not be more than 25 m from the baseline (rope).
5. Stand at position “A” and hold the protractor so that it is parallel to the baseline.
6. Place your pencil on the inside of the protractor and move it along the curve until it lines up with the object. See diagram 1.
7. Being very careful not to move your pencil, have your partner read and record the angle measurement.
8. Have your partner repeat steps 5-7 at position “B.”
9. On a sheet of graph paper along the very bottom, draw a line 10 cm long to represent your baseline. NOTE: For this exercise, let the scale be 1 m = 1 cm.
10. Mark one end of the drawn line as “A” and the other end as “B.”
11. At point “A” measure an angle that is the same number of degrees as the angle outside for point “A.” Mark and draw the angle.
12. At point “B” measure an angle that is the same number of degrees as the angle outside for point “B.” Mark and draw the angle. See diagram 2.
13. The two lines should intersect. Mark the point of intersection as point “C.”
14. Draw a line perpendicular from point “C” to the baseline.
15. Measure the distance of this perpendicular line.
16. Using the scale 1 m = 1 cm, determine the distance the object was from the baseline.

Conclusion
1. Why do astronomers use parallax to determine the distance to stars?
2. Name several situations when you might want to use parallax on Earth.

Extension
Use a different scale and determine distances of points farther away.
Scaling the Solar System

1. Astronomers need astronomical units (AU) to measure distances in space because the distances are so great. If miles or kilometers were used, they would be huge numbers and difficult to work with. Astronomical units help to simplify the measurements. The AU comes from early times when astronomers could only measure distances to planets relative to the AU, and they didn’t know the size of the AU.

2. The inner planets are Mercury, Venus, Earth, and Mars. The outer planets are Jupiter, Saturn, Uranus, and Pluto.

3. A large space with an asteroid belt separates the inner planets from the outer planets.

4. Scientists use models everyday. Models can be conceptual, mathematical, and scale. The solar system is so large we must use a scale to better understand the relationship between the Sun and the planets and to better understand the great distances in space.

AU Chart

<table>
<thead>
<tr>
<th>Planet</th>
<th>Bead Color</th>
<th>Distance in millions of km</th>
<th>~150</th>
<th>Relative Distance (AU)</th>
<th>Rounded to the nearest tenth</th>
<th>Distance in cm (AU) x 10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td></td>
<td>57</td>
<td>~150</td>
<td>0.38</td>
<td>0.4</td>
<td>4 cm</td>
</tr>
<tr>
<td>Venus</td>
<td></td>
<td>108</td>
<td>~150</td>
<td>0.72</td>
<td>0.7</td>
<td>7 cm</td>
</tr>
<tr>
<td>Earth</td>
<td></td>
<td>150</td>
<td>~150</td>
<td>1</td>
<td>1.0</td>
<td>10 cm</td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td>228</td>
<td>~150</td>
<td>1.52</td>
<td>1.5</td>
<td>15 cm</td>
</tr>
<tr>
<td>Asteroid belt</td>
<td></td>
<td>420</td>
<td>~150</td>
<td>2.8</td>
<td>2.8</td>
<td>28 cm</td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td>778</td>
<td>~150</td>
<td>5.18</td>
<td>5.2</td>
<td>52 cm</td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td>1,427</td>
<td>~150</td>
<td>9.51</td>
<td>9.5</td>
<td>95 cm</td>
</tr>
<tr>
<td>Uranus</td>
<td></td>
<td>2,280</td>
<td>~150</td>
<td>19.13</td>
<td>19.1</td>
<td>191 cm</td>
</tr>
<tr>
<td>Neptune</td>
<td></td>
<td>4,497</td>
<td>~150</td>
<td>29.98</td>
<td>30.0</td>
<td>300 cm</td>
</tr>
<tr>
<td>Pluto</td>
<td></td>
<td>5,900</td>
<td>~150</td>
<td>39.33</td>
<td>39.3</td>
<td>393 cm</td>
</tr>
</tbody>
</table>

Planning the Planets

- **Tilt is less than 30˚ Has Satellites**
 - Mercury
 - Mars
 - Jupiter
 - Saturn
 - Neptune
 - Uranus
 - Pluto

- **Larger than Earth**
 - Jupiter
 - Neptune
 - Saturn

- **Gravity is greater than 1**
 - Earth
 - Mars
 - Pluto

- **Has Satellites**
 - Titanic
 - Uranus
 - Saturn

- **Earth, Mars, Pluto**

- **All**
 - Earth
 - Mars
 - Pluto
What a Parallax!

1. Currently there is no physical way to measure the distance to nearby stars. The apparent shift in the position of an object when viewed from two different positions offers an observer an easy way to measure the distance.

2. Answers will vary but might include a distant building, tree, or mountain.
As the tree house detectives continue to search for the perfect "dock-of-call" for their out-of-this-world vacation, they have the opportunity to speak with the Expedition Six astronaut crew that is living and working on the International Space Station (ISS). Expedition Six Commander Kenneth Bowersox and Flight Engineers Donald Pettit and Nikolai Budarin describe the fun and the difficulties of learning to cope with microgravity and the very different environment known as space. The detectives decide that because the Moon is so close, it would make a perfect destination. To learn more about the Moon, they meet with Ed Prior from NASA Langley Research Center at the Virginia Air and Space Museum in Hampton, Virginia. Mr. Prior explains the phases of the Moon and how the Moon affects Earth's tides. The tree house detectives decide that before they can travel in space, they need to learn a little more about the harshness of an alien environment and some of the requirements to live there. They head to Dr. D's lab, and he helps them understand that environments in space are very different from Earth and what it would take to live in an alien environment. The tree house detectives decide that it is off to Mars, so they visit Robert Braun at NASA Langley Research Center. Mr. Braun describes Mars and discusses how it is similar, but very different from Earth.
Objectives

The students will
• understand the difficulties of working and living in space.
• learn the phases of the Moon.
• understand how the craters were created on the surface of the moon.
• learn that gravity varies on planets.
• compare and contrast Earth and Mars.

Vocabulary

Apollo Program—space program that began in 1961 with the goal of landing a man on the Moon before the end of the decade. On July 16, 1969, Neil Armstrong stepped onto the surface of the Moon (Apollo 11).

axis—an imaginary line around which an object spins

crater—a hole or depression roughly circular or oval in outline. On the Moon, most are of impact origin.

gravity—the attraction between two objects because of their mass

illuminate—to supply with light

Moon phases—the changes in appearance of the Moon as it orbits Earth every 27-1/2 days (new Moon, waxing crescent, first quarter, waxing gibbous, full Moon, waning gibbous, third quarter, and waning crescent)

polar ice cap—frozen region around the North and South Poles of a planet

tide—the periodic change in the surface level of the oceans due to the gravitational force of the Sun and Moon on Earth

Video Component

Implementation Strategy

The NASA SCI Files™ is designed to enhance and enrich existing curriculum. Two to three days of class time are suggested for each segment to fully use video, resources, activities, and web site.

Before Viewing

1. Prior to viewing Segment 2 of The Case of the Galactic Vacation, discuss the previous segment to review the problem and what the tree house detectives have learned thus far. Download a copy of the Problem Board from the NASA SCI Files™ web site in the educator area under the “Tools” section. Have students use it to sort the information learned so far.

2. Review the list of questions and issues that the students created prior to viewing Segment 1 and determine which, if any, were answered in the video or in the students’ own research.

3. Revise and correct any misconceptions that may have been dispelled during Segment 1. Use tools located on the web, as was previously mentioned in Segment 1.

4. Focus Questions–Print the questions from the web site ahead of time for students to copy into their science journals. Encourage students to take notes while viewing the program to answer the questions. An icon will appear when the answer is near.

5. What’s Up? Questions–Questions at the end of the segment help students predict what actions the tree house detectives should take next in the investigation process and how the information learned will affect the case. These questions can be printed from the web site ahead of time for students to copy into their science journals.

View Segment 2 on the Video

For optimal educational benefit, view The Case of the Galactic Vacation in 15-minute segments and not in its entirety. If you are viewing a taped copy of the program, you may want to stop the video when the Focus Question icon appears to allow students time to answer the question.
After Viewing

1. Have students reflect on the "What's Up?" questions asked at the end of the segment.
2. Discuss the Focus Questions.
3. Have students work in small groups or as a class to discuss and list what new information they have learned about the solar system, stars, and how to measure distances in space, to the Moon and Mars.
4. Organize the information and determine if any of the students' questions from Segment 1 were answered.
5. Decide what additional information is needed for the tree house detectives to design their "out-of-this-world" vacation. Have students conduct independent research or provide students with information as needed. Visit the NASA SCI Files™ web site for an additional list of resources for both students and educators.
6. Choose activities from the educator guide and web site to reinforce concepts discussed in the segment. Pinpoint areas in your curriculum that may need to be reinforced and use activities to aid student understanding in those areas.
7. For related activities from previous programs, visit the "Educator Area" and click on "Activities/Worksheets" in the menu bar at the top. Scroll down to "2001-2002 Season" and click on The Case of the Inhabitable Habitat.
 a. In the educator guide you will find
 a. Segment 1—Earth Versus Mars, How Fast Does It Need To Go?
 b. Segment 3—Newton Would Have Understood the GRAVITY of the Situation, Star Training, Vomit Comet, and Properly Gloved
 b. In the "Activities/Worksheet" Section you will find
 a. Wish You Were Here!
 b. All You Do is Train
 c. Creating Microgravity
8. If time did not permit you to begin the web activity at the conclusion of Segment 1, refer to number 6 under "After Viewing" (page 15) and begin the Problem-Based Learning activity on the NASA SCI Files™ web site. If the web activity was begun, monitor students as they research within their selected roles, review criteria as needed, and encourage the use of the following portions of the online, Problem-Based Learning activity:
 • Research Rack—books, internet sites, and research tools
 • Problem-Solving Tools—tools and strategies to help guide the problem-solving process
 • Dr. D's Lab—interactive activities and simulations
 • Media Zone—interviews with experts from this segment
 • Expert's Corner—listing of Ask-An-Expert sites and biographies of experts featured in the broadcast
9. Have students write in their journals what they have learned from this segment and from their own experimentation and research. If needed, give students specific questions to reflect upon as suggested on the PBL Facilitator Promting Questions instructional tool found in the educator’s area of the web site.
10. Continue to assess the students' learning, as appropriate, by using their journal writings, problem logs, scientific investigation logs, and other tools that can be found on the web site. For more assessment ideas and tools, visit the Educators’ area and in the menu bar click on "Instructional Tools."
Resources

Books

Web Sites

Moon Trees
Scattered around our planet are hundreds of creatures that have been to the Moon and back again. None of them are human. They outnumber active astronauts 3:1, and most are missing. They’re trees, “Moon Trees.” Learn all about these missing trees.
http://science.nasa.gov/headlines/y2002/13aug_moontrees.htm?list79629

International Space Station (ISS) Crew
Visit this web site to learn about the ISS and the astronauts (past and present) that live and work there. Read the crew’s biographies, see what they planned for their daily menus, and even ask them questions. There is also a great section to learn more about the ISS and how to become an astronaut.
http://spaceflight.nasa.gov/station/crew/exp6/

The Young Astronaut Council
The Young Astronaut Council program includes multimedia, kit-based curriculum, annual contests, international conferences, a satellite television course, and a CD-ROM. Visit the Young Astronaut web site to learn how to start a chapter in your state or how to become a member.
http://www.yac.org/yac/

NASA Mars Exploration Classroom Resources
This page has an extensive list of classroom resources about Mars. There are classroom activities, posters, and a rich list of online materials.
http://mars.jpl.nasa.gov/classroom/teachers.html

Windows to the Universe
A wealth of information is listed on this site for both students and educators. Visit some of the windows to learn more about space missions, the solar system, the Moon, the universe, a time line of discoveries, and the various myths associated with the planets, Sun, and Moon. Written in three levels with lots of really cool stuff.
http://www.windows.ucar.edu/tour/link=/windows3.html

Space World
This site will keep the students fascinated for hours. Take a closer look at the Sun, label the Moon phases, and much more.
http://www.gigglepotz.com/space.htm

Whoosh!
Visit this site to learn all about the planets and the Sun and even play a space mission game.
http://www.abc.net.au/children/space/default.htm

Astronomy for Kids
Easy-to-read fact pages about the planets, Moon, Sun, and other space-related topics.
http://www.frontiernet.net/~kidpower/astronomy.html

Torino Impact Hazard Scale—Planetary scientists have developed the Torino Impact Hazard Scale, a new means of conveying the risks associated with asteroids and comets that might collide with the Earth.
http://neo.jpl.nasa.gov/torino_scale.html

Space.Com
Visit this web site to learn what phase of the Moon you will see each day of the month. There is a sky calendar, planet watch, and much more.
http://www.space.com/spacewatch/sky_calendar.html
Activities and Worksheets

In the Guide

Astronaut Geography
Study the list and use a map to learn where astronauts were born. 30

The Taste of the Matter
Become a taste tester and evaluate the acceptability of food products for space travel. 33

Round and Round the Earth We Go
Use models to demonstrate the phases of the Moon. 35

Doesn’t Phase Me
Create your own flipbook to “watch” the phases of the Moon. 36

Moon Craters
Try this activity to learn how craters are formed. 37

Dressing for Space
Put on a crazy outfit and learn what it is like to wear a space suit. 38

The Red Planet
Try this experiment to understand why Mars is a reddish color. 39

Mission to Mars
Design a mission to Mars and determine who should go and why. 40

Answer Key
... 41

On the Web

My Life as an Astronaut
Conduct research on astronauts to identify interests, skills, and education needed to become an astronaut.

Moonlight of the Night
Observe the night sky and keep a class journal to observe the phases of the Moon.

Too Short?
Simulate the effect of gravity on an astronaut’s spinal cord.
Astronaut Geography

Problem
To discover the states where astronauts were born and to identify these states on a map.

Background
The term "astronaut" comes from the Greek words meaning "space sailor," and refers to all who have been launched as crewmembers aboard NASA spacecraft bound for orbit and beyond. Since the inception of NASA's human space flight program, we have also maintained the term "astronaut" as the title for those selected to join the NASA corps of those who make "space sailing" their profession. The term "cosmonaut" refers to those space sailors who are members of the Russian space program. For this exercise, only astronauts born in the continental United States have been used.

Procedure
1. Choose 17 different colors and/or patterns to complete the US Map Key. For example, color "0" red, and color "1" as red stripes.
2. Look at the "Astronaut List" (p. 31) and count the number of astronauts for each state. Write the number beside each state.
3. Use the US Map Key you created to color the states the appropriate color and/or pattern as determined by the number of astronauts born in that state. For example, Kentucky (KY) has one. Following the example in step 1, KY would be colored in red stripes. Use an atlas if you need help with state abbreviations or locations.

Conclusion
1. How many states did not have any astronauts?
2. How many states have fewer than 10 astronauts?
3. Which state has the most astronauts?
4. How many astronauts are from your state?
5. Why would some states have many more astronauts than other states?

Materials
- Astronaut List
- U.S. map
- atlas (optional)
- map pencils
Astronaut Geography (continued)

<table>
<thead>
<tr>
<th>ALABAMA</th>
<th>DELAWARE</th>
<th>FLORIDA</th>
<th>NEW YORK</th>
<th>SOUTH DAKOTA</th>
<th>WASHINGTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartsfield</td>
<td>Currie</td>
<td>Boe</td>
<td>Adamson</td>
<td>Gamar</td>
<td>Barratt</td>
</tr>
<tr>
<td>Hire</td>
<td></td>
<td>Davis</td>
<td>M. Anderson</td>
<td>Low</td>
<td>Dunbar</td>
</tr>
<tr>
<td>Jemison</td>
<td></td>
<td>Lawrence</td>
<td>Bobko</td>
<td></td>
<td>Gordon</td>
</tr>
<tr>
<td>K. Thornton</td>
<td></td>
<td>Lenoir</td>
<td>Cagle</td>
<td></td>
<td>G.C. Johnson</td>
</tr>
<tr>
<td>James Voss</td>
<td></td>
<td>R. Richards</td>
<td>Camarda</td>
<td></td>
<td>Oswald</td>
</tr>
<tr>
<td>C. Williams</td>
<td></td>
<td>W. Scott</td>
<td>Cleave</td>
<td></td>
<td>Scobee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARIZONA</th>
<th>GEORGIA</th>
<th>MISSOURI</th>
<th>OKLAHOMA</th>
<th>TENNESSEE</th>
<th>WEST VIRGINIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creamer</td>
<td>Bridges</td>
<td>Akers</td>
<td>Cooper</td>
<td>M. Baker</td>
<td>McBride</td>
</tr>
<tr>
<td>S. Smith</td>
<td>Carter</td>
<td>Behnken</td>
<td>Garriott</td>
<td>Bull</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hammond</td>
<td>Godwin</td>
<td>Harrington</td>
<td>Jernigan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kilrain</td>
<td>Kavand</td>
<td>Pogue</td>
<td>Seddon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walker</td>
<td>Springer</td>
<td>Stafford</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARKANSAS</th>
<th>LOUISIANA</th>
<th>MISSISSIPPI</th>
<th>OREGON</th>
<th>PENNSYLVANIA</th>
<th>VIRGINIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covey</td>
<td>Gorie</td>
<td>Haise</td>
<td>Griggs</td>
<td>A. Allen</td>
<td>Bowersox</td>
</tr>
<tr>
<td>Parazynski</td>
<td></td>
<td>Peterson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CALIFORNIA</th>
<th>NEBRASKA</th>
<th>NORTH CAROLINA</th>
<th>PENNSYLVANIA</th>
<th>WASHINGTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caldwell</td>
<td>B. Anderson</td>
<td>E. Baker</td>
<td>A. Allen</td>
<td>Barratt</td>
</tr>
<tr>
<td>Chilton</td>
<td>Carter</td>
<td>Brady</td>
<td>Bagian</td>
<td>Dunbar</td>
</tr>
<tr>
<td>Clifford</td>
<td>Ham</td>
<td>Duke</td>
<td>Bluford</td>
<td>Gordon</td>
</tr>
<tr>
<td>Coats</td>
<td>Lenoir</td>
<td>Helms</td>
<td>Bursch</td>
<td></td>
</tr>
<tr>
<td>Hauck</td>
<td>R. Richards</td>
<td>W. McArthur</td>
<td>Conrad</td>
<td></td>
</tr>
<tr>
<td>Lindsey</td>
<td>Resnik</td>
<td>J. Smith</td>
<td>Ferguson</td>
<td></td>
</tr>
<tr>
<td>Love</td>
<td>Segal</td>
<td>W. Thornton</td>
<td>Feustel</td>
<td></td>
</tr>
<tr>
<td>McCool</td>
<td>K. Thomas</td>
<td>W. Williams</td>
<td>Fincke</td>
<td></td>
</tr>
<tr>
<td>McCulley</td>
<td></td>
<td></td>
<td>Freeman</td>
<td></td>
</tr>
<tr>
<td>Meloy</td>
<td></td>
<td></td>
<td>Frick</td>
<td></td>
</tr>
<tr>
<td>Morgan</td>
<td></td>
<td></td>
<td>Hart</td>
<td></td>
</tr>
<tr>
<td>Ochoa</td>
<td></td>
<td></td>
<td>Robertson</td>
<td></td>
</tr>
<tr>
<td>O’Connor</td>
<td></td>
<td></td>
<td>Horowitz</td>
<td></td>
</tr>
<tr>
<td>Olivas</td>
<td></td>
<td></td>
<td>Irwin</td>
<td></td>
</tr>
<tr>
<td>Poindexter</td>
<td></td>
<td></td>
<td>P. Richards</td>
<td></td>
</tr>
<tr>
<td>Ride</td>
<td></td>
<td></td>
<td>Tani</td>
<td></td>
</tr>
<tr>
<td>Robinson</td>
<td></td>
<td></td>
<td>Weitz</td>
<td></td>
</tr>
<tr>
<td>Sturckow</td>
<td></td>
<td></td>
<td>RHODE</td>
<td></td>
</tr>
<tr>
<td>Van Hoften</td>
<td></td>
<td></td>
<td>ISLAND</td>
<td></td>
</tr>
<tr>
<td>Walheim</td>
<td></td>
<td></td>
<td>Readdy</td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLORADO</th>
<th>MASSA - CHUSETTS</th>
<th>NEW JERSEY</th>
<th>NORTH DAKOTA</th>
<th>SOUTH CAROLINA</th>
<th>WASHINGTON DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand</td>
<td>Apt</td>
<td>Aldrin</td>
<td>Buchli</td>
<td>Bolden</td>
<td>Drew</td>
</tr>
<tr>
<td>Carpenter</td>
<td>Bowen</td>
<td>Ham</td>
<td>Hieb</td>
<td>Casper</td>
<td></td>
</tr>
<tr>
<td>Carr</td>
<td>Duffy</td>
<td>M. Kelly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lounge</td>
<td>Linehan</td>
<td>S. Kelly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rominger</td>
<td>Loria</td>
<td>Polansky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roosa</td>
<td>Lu</td>
<td>Reisman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swigert</td>
<td>McCandless</td>
<td>Schira</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Musgrave</td>
<td>Schweickart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O’Leary</td>
<td>Sullivan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precourt</td>
<td>Zamka</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTICUT</th>
<th>NEW MEXICO</th>
<th>NORTH CAROLINA</th>
<th>PENNSYLVANIA</th>
<th>VIRGINIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barry</td>
<td>Gutierrez</td>
<td>Armstrong</td>
<td>Bowersox</td>
<td>Bowdler</td>
</tr>
<tr>
<td>Burbank</td>
<td>Schmitt</td>
<td>Bassett</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastracchio</td>
<td></td>
<td>Cameron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>Eisele</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thuet</td>
<td></td>
<td>Foreman</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gernhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glenn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harbaugh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Henize</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Henricks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	NEW YORK	NORTH DAKOTA	PENNSYLVANIA	VIRGINIA		
			Bowersox	Bowdler		

	NORTH CAROLINA	PENNSYLVANIA	VIRGINIA			
Astronaut Geography (concluded)

Student Sheet

Procedure
1. Use the chart to color each state on the map.
2. Answer the questions on this page after coloring the map.

Questions
1. How many states have more than 20 astronauts?
2. How many states do not have any astronauts?
3. How many states have fewer than 10 astronauts?
4. Which state has the most astronauts?
5. Which states have six astronauts?
6. How many astronauts are from your state?

Map Key

<table>
<thead>
<tr>
<th>#</th>
<th>COLOR</th>
<th>#</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>8</td>
<td>17</td>
</tr>
</tbody>
</table>

United States
The Taste of the Matter

Problem
To determine the acceptability of food products for space flight

Teacher Prep
Select 3-5 food samples from products that must be hydrated. For example, pudding mix, soup mix, instant oatmeal, and so on. Select 2-3 drink samples such as crystal drink mix, punch mix, instant tea, and so on. Calculate the approximate amount of food to be prepared for each student to have a small sample. Just before the test is conducted, prepare the products according to package directions. Either prepare test sample plates for each student, or place a spoon in each dish and have the students get their own samples. Give each student one cracker for each sample.

Background
Astronauts select their menus for space travel about five months before they fly. These foods will be stored in the galley. It does not help astronauts to take foods into space that they do not like and will not eat. Therefore, a special taste panel is set up for the astronauts to taste a variety of foods when they are selecting their menus. Foods are tested for appearance, color, odor, flavor, and texture. This taste panel helps to reduce the amount of waste from uneaten or partially eaten foods and ensures that the astronauts will eat well in space.

Procedure
1. Read the guidelines on the “Taste Panel Evaluation Form” (p. 34). Choose one food sample from your plate and write its name on the form at the top of the second column from the left.
2. Observe the food sample. Record its appearance, color, and odor in the correct columns.
3. Taste the food sample and record your observations for flavor and texture.
4. Rate this food sample using the scale at the bottom of the chart.
5. Write any comments you wish to make. Use the descriptive words given or your own.
6. To clear the taste of that food sample from your mouth, eat one cracker.
7. Repeat steps 1-6 with the other food samples.
8. Repeat steps 1-6 with the drink samples.
9. Clean up and restore your area.
10. Share your observations and results with the class.
11. Create a class chart of the scores given to each food and drink sample.
12. Create a graph depicting the results.

Conclusion
1. Which food would you prefer to take with you into space?
2. Which food received the highest score? Why? Lowest score? Why?
3. Why do you think it is important to test the food before it is taken into space?

Extension
1. From the evaluation forms, choose a meal of your choice and write a paragraph explaining why you chose those foods. Use descriptive words from the “Taste Panel Evaluation Form” (p. 34).
2. Use a food pyramid to evaluate your choices and determine if you chose a healthy, well-balanced meal.

Materials
paper plates
plastic spoons
food samples
drink samples
drink pitchers
small cups
water
 crackers (5-8 per student)
pencil
napkins
The Taste of the Matter (concluded)

Taste Panel Evaluation Form

The following guidelines should be followed when rating a food product:
1. Emphasis is on quality of the food product rather than your own personal likes and dislikes.
2. If you absolutely dislike the product because of personal preferences, do not rate it.
3. The overall rating is your general impression of the product.
4. Do not compare notes with other taste testers.
5. In the comments section, explain why you rated the product as you did.

<table>
<thead>
<tr>
<th>ITEM:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ratings
1—Dislike Extremely 4—Dislike Slightly 7—Like Moderately
2—Dislike Very Much 5—Neither Like nor Dislike 8—Like Very Much
3—Dislike Moderately 6—Like Slightly 9—Like Extremely

Descriptive Comments
Here is a list of descriptive terms that can be used to describe the food samples.

<table>
<thead>
<tr>
<th>Taste/Odor</th>
<th>Texture</th>
<th>Color/Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>bitter</td>
<td>crisp</td>
<td>dull</td>
</tr>
<tr>
<td>sweet</td>
<td>soft</td>
<td>sparkling</td>
</tr>
<tr>
<td>sour</td>
<td>hard</td>
<td>bright</td>
</tr>
<tr>
<td>salty</td>
<td>stringy</td>
<td>light</td>
</tr>
<tr>
<td>rancid</td>
<td>tough</td>
<td>dark</td>
</tr>
<tr>
<td>stale</td>
<td>chewy</td>
<td>greasy</td>
</tr>
<tr>
<td>tasteless</td>
<td>firm</td>
<td>glossy</td>
</tr>
<tr>
<td>flat</td>
<td>grainy</td>
<td>cloudy</td>
</tr>
<tr>
<td>musty</td>
<td>gummy</td>
<td>old</td>
</tr>
<tr>
<td></td>
<td>lumpy</td>
<td>pale</td>
</tr>
</tbody>
</table>
Round and Round the Earth We Go

Problem
To use a model to observe how the phases of the Moon are created.

Background
As Earth's only natural satellite, the Moon has long been an object of fascination and confusion. Over the course of a 28-day cycle (lunar cycle), the Moon shows us many different faces (shapes). These different shapes are called phases, and they are the result of the way the Sun lights the Moon's surface as the Moon orbits Earth. The Moon can only be seen as a result of the Sun's light reflecting off it. It does not produce any light of its own.

Procedure
1. Place the lamp (represents the Sun) on a table or have your partner hold the lamp up high.
2. After the lamp has been turned on, darken the room.
3. With your body representing Earth, hold the tennis ball, representing the Moon, in your left hand and at arms' length slightly overhead. See diagram 1. It is this inclined orbit that allows us to see a full Moon even when the Earth is between the Sun and the Moon.
4. Face the Sun.
5. Observe the ball. Note that the lamp has lit up the side of the Moon away from you (Earth) and you only see dark. This phase is called a new Moon, and it occurs when the Moon is between the Sun and Earth. You only see dark from Earth.
6. While you (Earth) are still facing the Sun, hold the Moon straight out to the side and note which side of the Moon is lit. The Moon has now revolved one-quarter of the way around Earth. This takes approximately one week after a new Moon.
7. For the next phase, place your back to the Sun and hold the Moon straight out in front of you (Earth) keeping it slightly overhead. See diagram 2. The entire surface of the ball is lit, and this is a full Moon. The Moon has not completed half of its revolution around Earth.
8. Move the Moon to your right hand. Now move the right arm into a position straight out to the side. Once again, only half the Moon is lit. Note which half is lit. This phase is known as a third-quarter Moon and it appears approximately three weeks after a new Moon.
9. Face the Sun again and hold the Moon straight out in front and slightly overhead. Once again, you only see the darkened side of the Moon. The lunar cycle starts over again.
10. In your science journal, describe and illustrate what you observed.
11. Repeat with your partner as the Moon and you as the Sun.

Conclusions
1. What happened as you revolved around the “Sun?”
2. Why did the shadows change?
3. The Moon rotates on its axis once every 28 days, and it revolves around Earth once every 28 days. Knowing this information, explain why we only see one side of the Moon. Hint: Mark a spot on the ball (Moon) and revolve it around you (Earth) without letting it rotate about its axis. Note what you observe about the side of the ball (Moon) facing you (Earth). Now repeat while rotating the ball (Moon).

Extension
1. Research the phases of the Moon and create a diagram using the word bank below, that shows the phases of the moon as it orbits the earth.

Word Bank:
New Moon, Waxing Crescent, Full Moon, Waning Crescent, Third Quarter, First Quarter, Waxing Gibbous, Waning Gibbous

Materials
lamp without shade
table (optional)
tennis ball
darkened room

Diagram 1

Diagram 2
Doesn’t Phase Me

Problem To understand the phases of the Moon

Teacher Note An alternative to index cards is to print the Moon Journal sheet from the NASA SCI Files™ web site http://scifiles.larc.nasa.gov in the “Educator” area under “Activities and Worksheets” for *The Case of the Galactic Vacation*. For a better flipbook, copy the sheet onto card stock and have students cut out the individual squares. You will need to copy approximately 3 sheets for each student or group.

Procedure

1. Discuss the phases of the Moon.
2. Place all index cards so that the unlined side of each card is facing up.
3. From the right side of each card, measure 1 cm from the edge halfway up and down the card and place a small pencil mark. See diagram 1.
4. Set your compass to draw a 6-cm diameter circle.
5. Place the pencil point of your compass on the mark you made in Step 3. Make sure the compass point is halfway up and down the card. See diagram 2.
6. Draw a circle.
7. Repeat Steps 4-6 until all cards have circles.
8. Using 8 cards, shade in the following Moon phases:
 a. new Moon
 b. waxing crescent
 c. first quarter
 d. waxing gibbous
 e. full Moon
 f. waning gibbous
 g. third quarter
 h. waning crescent
9. The changes in the Moon phases happen slowly over a 28-day period of time. To simulate the gradual change, progressively shade in the remaining cards using at least 2 but not more than 3 cards between each phase listed above. You might want to decide upon the number of cards between each phase before you begin.
10. Place the cards in order, with the new Moon on top and the circles on the right side.
11. On the left side, staple through all 28 cards in three places. Optional: If you are unable to staple through all the cards, punch holes on the left side of each card, making sure that the holes will align. Place brads through the holes to secure cards in place.
12. Flip the cards and watch the phases of the Moon.

Materials

- 28 3” x 5” index cards
- compass
- metric ruler
- pencil
- black marker
- stapler
- hole-punch (optional)
- 2 brads (optional)

Diagram 1

Diagram 2
Moon Craters

Problem
To learn how craters are formed on the Moon

Background
Have you ever looked at the Moon and thought it had a bad case of acne? Just what are all those circular features on the Moon's surface? They are impact craters formed when impactors, such as meteorites, smashed into the surface of the Moon. The explosion created by the impact caused the soil and rocks to be spattered out, leaving a hole. Around the circular hole, piles of rock (called ejecta) were created as well as bright streaks of target material (called rays) thrown for great distances. Impact craters are not unique to the Moon. They are found on all the inner planets and on many moons of the outer planets. Due to weathering and erosion, impact craters on Earth are not as easily recognized but there are several famous ones, including Meteor Crater in Arizona.

Procedure
1. Spread several newspapers on the floor and put the metal pan in the center.
2. Pour flour into the metal pan to a depth of approximately 2 cm.
3. Shake the pan to evenly distribute the flour.
4. Dust the top of the flour with dry tempera paint. Use sifter to better distribute the dry paint.
5. Hold one of the balls 1 meter above the pan and release.
6. Observe the impact crater created and measure its diameter. Note the ejecta and rays. Record your observations in your science journal.
7. Using the other balls, repeat steps 5 and 6. If your surface is too small for all your balls, gently shake the flour to smooth it out and dust the surface again between drops.
8. Try dropping the balls from different heights and throwing them at different angles.

Conclusion
1. What happened when you increased the drop height of the balls?
2. At 1 meter, which ball made the largest crater? Smallest? Why?

Extension
Look at several different pictures of the Moon and compare and contrast the various craters.

Materials
- large metal pan
- flour or sand
- dry tempera paint or colored powdered drink mixes
- sifter (optional)
- metric ruler
- meter stick
- newspaper
- various sized balls (marbles, golf ball, ping-pong ball, and so on)
- science journal
Dressing for Space

Problem
To understand the complex nature of a space suit

Background
Before astronauts can venture out into space, they must put on several layers of special clothing. The first layer is like a pair of long underwear that has water-cooling tubes running all through it. This layer keeps the astronaut at a comfortable temperature. The space suit itself is also made of several layers. These layers were designed to protect the wearer from the many dangers found in space, such as extreme temperatures, radiation, and micrometeorites, or space dust. The inside layer is a pressure bladder – like a flat balloon that is filled with oxygen. Next, there is a layer of plastic for strength and several layers of fireproof material and thin sheets of metal. Early space suits were connected to the life-support system of the spacecraft by a tube called an umbilical. Space suits worn today have a life support system backpack built right into the upper part of the suit.

Teacher Prep
Have students bring in the following articles of clothing or provide them: tights or long underwear, pants, boots, long-sleeved T-shirt, knit hat, gloves, and a helmet. You will also need a long piece of rope.

Note: To make this experiment more realistic, attach the pieces of clothing together. Attach the socks to the bottom of the pants legs and then place the boots over the socks. Attach the long-sleeved T-shirt to the top of the pants and make it a “one-piece” space suit. If a snowsuit is available, you can also place the pants and T-shirt inside the snowsuit, and then attach the socks and boots to make it really bulky!

Procedure
1. Imagine that you are an astronaut who has a task to perform outside the spacecraft. You are inside an airlock on the space shuttle, and it is time to get into your space suit. Follow the directions below for getting into your “space suit.”
 a. Long underwear: This is the first layer of your space suit. To put it on is like pulling on a pair of long underwear, but this underwear would have tubes running all through it, so it is not very easy to get into. First, put your legs in one at a time and then wiggle the suit high enough to get your arms into the openings and fasten this layer closed.
 b. Space Trousers—These are thick and bulky and have boots connected to them. Climb into the trousers and wiggle your feet into the socks and boots.
 c. Space Shirt—To cover your upper body (torso), put your arms into the shirt and close.
 d. For your communications carrier (a headset built into a cap), put on the stocking cap. Adjust so that it fits snugly over your ears.
 e. Gloves—Put on the thick gloves and wiggle your fingers.
 f. Helmet—Place the helmet on over your stocking cap.
2. In real life, you would have to connect many hoses and set many dials as you dressed. But for our pretend journey, you are ready to climb out of the hatch of the airlock into the cargo bay of the shuttle.
3. Attach your lifeline and pretend that you are floating in space inside your thick space cocoon!

Conclusion
1. Why are so many layers needed in a space suit?
2. What do you think it would be like to perform tasks in space in a space suit?
The Red Planet

Purpose
To understand why Mars is a reddish color

Background
Mars earned its nickname “the Red Planet” because it looks red to observers in the sky. The color comes from the iron in its rusty-orange rocks and fine red sand. The planet’s atmosphere of carbon dioxide is too thin to stop the heat from the Sun escaping into space. Mars is a cold desert.

Procedure:
1. Place the rubber gloves on your hands.
2. Stretch the wool to loosen the fibers.
3. Put the wool pad in a dish and pour enough water on it to wet it thoroughly but not soaked.
4. Let it stand for 3-5 days.
5. Observe the pad each day and record your observations in your science journal.
6. On the last day, pick up the wool pad and examine it closely. Record your observations.

Conclusions:
1. What happened to the steel wool in the pad?
2. What caused this reaction?
3. Using the same analogy, explain why the rocks on Mars appear to be red.

Materials
- a piece of clean steel
- wool
- water
- dish or saucer
- rubber gloves
- science journal

![Diagram showing the experiment setup with a pitcher pouring water onto a steel wool pad on a saucer.]
In his 1991 State of the Union message, President George Bush announced that a U.S. goal would be to send a human expedition to Mars by the 50th anniversary of the first human landing on the Moon. That anniversary will be in the year 2019!

A trip to Mars will probably take nine months. The crew will have to spend about two months on Mars before they can head back to Earth. The return trip will also be nine months. The entire trip will be almost two years.

Before humans can be sent from Earth to Mars, it will be necessary to determine what types of professional people will be needed to properly establish the Mars colony. Your task is to create a list of the first crew and to justify your choices.

In your group, discuss and answer the following questions:

1. How many people should go on this first mission to Mars?
2. Which of the professions listed below are most necessary to the success of the mission? Which are the least?
 a. Doctor, geologist, chemist, zoologist, nurse, astronomer, botanist, computer expert, journalist, geographer, teacher, electrical technician, pilot, telecommunications expert, construction worker, dentist, physical fitness trainer, engineer, law enforcement officer, and lawyer
3. Should the crew be all military, all civilians, or a mixture of both?
4. Should the crew be all females, all males, or a mixture of both?
5. Who will be the first person to step on the surface of Mars? What should his/her first words be? Remember that everyone on Earth will be listening. Consider Neil Armstrong’s message from the Moon, “That’s one small step for man, one giant leap for mankind!” Write your own message.

Share your decisions and justifications with the class in the form of a written report, poster, video, Power Point presentation, or in some other appropriate way.
Astronaut Geography
1. There are nine states that do not have astronauts. They are Alaska, Idaho, Illinois, Indiana, Iowa, Kansas, Montana, Nevada, and Wyoming.
2. Thirty-three states have fewer than 10 astronauts.
3. California has the most astronauts with 21.
4. Answers will vary.
5. Answers will vary but might include that the populations of the various states might influence the number of astronauts, that different states may have programs that encourage space careers, and so on.

The Taste of the Matter
1. Answers will vary.
2. Answers will vary.
3. Answers will vary but should include that having astronauts taste the food prior to their going into space helps to ensure that the astronauts will have foods that they like and will eat and will also help ensure that they will receive a balanced diet.

Round and Round We Go
1. As you revolved around the “Sun,” you saw different areas of the “Moon” illuminated.
2. The shadows changed because from where you were able to observe the “Moon,” you could not always see the entire lit surface. Sometimes you just saw part of the lit half of the Moon.
3. We only see one side of the Moon because the Moon rotates at the same rate it revolves. For example, as the Moon revolves halfway around the Earth, it also rotates halfway around its axis, and the same side remains facing the Earth. Try it!

Moon Craters
1. When you increased the drop height of the balls, the crater became larger in diameter.
3. Answers will vary.

Dressing for Space
1. Many layers are needed to protect the astronaut. The underwear with tubes is used to cool the astronauts, and the many layers of the suit are to protect the astronaut from radiation, micrometeorites, and other hazards of space.
2. Answers will vary but should include that it would be very difficult to move and perform tasks in such bulky clothing.

The Red Planet
1. The steel wool in the pad became fragile and crumbly, leaving a reddish-orange residue (rust or iron oxide).
2. This reaction is caused as the iron in the steel wool mixes with water and oxygen in the air, thus creating the rust. Many rocks on Mars contain iron-bearing minerals. These minerals have slowly rusted, leaving a ruddy dust on the surface and in the atmosphere.

On the Web

Moonlight of the Night
1. After a full Moon, the Moon began to get smaller. From Earth, we are able to see less and less of the lit surface of the Moon.
2. After a new Moon, the Moon began to get larger. From Earth, we are able to see more and more of the lit surface of the Moon.
3. Waxing means to grow larger, stronger, fuller, or more numerous. When the Moon goes from a new Moon to a full Moon it is waxing. Waning means to grow gradually smaller or less. As the Moon goes from a full Moon to a new Moon it is waning.

Too Short?
1. The balloon on the baby food jar bulged upward when you pulled the neck of the balloon on the large jar upward.
2. Pushing down on the balloon made the balloon sink in.
3. On Earth, gravity holds the separate discs in the spinal cord tightly together. In a low-gravity environment such as space, a reduction in gravity allows the spinal cord to separate and pull apart.
4. The separating and pulling apart of the spinal cord in a low-gravity environment would result in an instant growth spurt.
After learning that space travel is going to take a little longer than the tree house detectives had anticipated, they decide to learn more about traveling in space. They meet up with Dr. D at Busch Gardens to ride a few roller coasters to learn about gravity, acceleration, G-forces, and weightlessness. After having way too much fun, they decide that their next stop is to visit NASA’s Starship 2040, where Mr. Wang of NASA Marshall Space Flight Center explains and shows them what space travel will be like in about 50 years. The tree house detectives realize that no matter where they go for their “out-of-this-world” vacation, they will need to have a different rocket (propulsion) system than is currently available. They decide to visit Dr. Franklin Chang-Diaz of NASA Johnson Space Center to learn more about plasma rockets and how they will help us travel faster in the future.
Objectives

The students will
- understand that gravity is an attractive force.
- understand that microgravity is free-falling.
- learn what future space travel will be like.
- learn how rockets are powered.

Vocabulary

acceleration—the rate of change of velocity with respect to time

fusion—the act or process of melting or making fluid by heat; the union of light atomic nuclei to form heavier nuclei resulting in the release of enormous quantities of energy

inertia—a property of matter by which it remains at rest or in unchanging motion unless acted on by some external force

navigation—the science of getting ships, aircraft, or spacecraft from place to place; especially the method of figuring out position, course, and distance traveled

parabola—a curve formed by the intersection of a cone with a plane parallel to a straight line in its surface; something that is bowl-shaped

plasma—a collection of charged particles (as in the atmospheres of stars) that shows some characteristics of a gas but that differs from a gas in being a good conductor of electricity and in being affected by a magnetic field

propulsion—the action of pushing or driving, usually forward or onward

satellite—any object that revolves around another object

weightlessness—having little weight; lacking apparent gravitational pull

Video Component

Implementation Strategy

The NASA SCI Files™ is designed to enhance and enrich existing curriculum. Two to three days of class time are suggested for each segment to fully use video, resources, activities, and web site.

Before Viewing

1. Prior to viewing Segment 3 of *The Case of the Galactic Vacation*, discuss the previous segment to review the problem and what the tree house detectives have learned thus far. Download a copy of the Problem Board from the NASA SCI Files™ web site and have students use it to sort the information learned so far.

2. Review the list of questions and issues that the students created prior to viewing Segment 2 and determine which, if any, were answered in the video or in the students’ own research.

3. Revise and correct any misconceptions that may have been dispelled during Segment 2. Use tools located on the web, as was previously mentioned in Segment 1.

4. Focus Questions—Print the questions from the web site ahead of time for students to copy into their science journals. Encourage students to take notes during the program to answer the questions. An icon will appear when the answer is near.

5. What’s Up? Questions—Questions at the end of the segment help students predict what actions the tree house detectives should take next in the investigation process and how the information learned will affect the case. These questions can be printed from the web site ahead of time for students to copy into their science journals.
View Segment 3 of the Video

For optimal educational benefit, view The Case of the Galactic Vacation in 15-minute segments and not in its entirety. If you are viewing a taped copy of the program, you may want to stop the video when the Focus Question icon appears to allow students time to answer the question.

After Viewing

1. Have students reflect on the “What’s Up?” questions asked at the end of the segment.
2. Discuss the Focus Questions.
3. Have students work in small groups or as a class to discuss and list what new information they have learned about the solar system, the Moon, Mars, and space travel. Organize the information, place it on the Problem Board, and determine if any of the students’ questions from Segment 2 were answered.
4. Decide what additional information is needed for the tree house detectives to design their “out-of-this-world” vacation. Have students conduct independent research or provide students with information as needed. Visit the NASA SCI Files™ web site for an additional list of resources for both students and educators.
5. Choose activities from the educator guide and web site to reinforce concepts discussed in the segment. Pinpoint areas in your curriculum that may need to be reinforced and use activities to aid student understanding in those areas.
6. If time did not permit you to begin the web activity at the conclusion of Segments 1 or 2, refer to number 6 under “After Viewing” on page 15 and begin the Problem-Based Learning (PBL) activity on the NASA SCI Files™ web site. If the web activity was begun, monitor students as they research within their selected roles, review criteria as needed, and encourage the use of the following portions of the online, PBL activity:
 • **Research Rack**—books, internet sites, and research tools
 • **Problem-Solving Tools**—tools and strategies to help guide the problem-solving process.
 • **Dr. D’s Lab**—interactive activities and simulations
 • **Media Zone**—interviews with experts from this segment
7. Have students write in their journals what they have learned from this segment and from their own experimentation and research. If needed, give students specific questions to reflect upon as suggested on the PBL Facilitator Prompting Questions instructional tool found in the educator area of the web site.
8. Continue to assess the students’ learning, as appropriate, by using their journal writings, problem logs, scientific investigation logs, and other tools that can be found on the web site. Visit the Research Rack in the tree house, the online PBL investigation main menu section, “Problem-Solving Tools,” and the “Tools” section of the educator’s area for more assessment ideas and tools.

Careers
- chemical engineer
- roller coaster designer
- flight controller
- mission specialist
- flight surgeon

The Case of the Galactic Vacation

NASA

EG-2003-05-07-LARC
Resources

Books

Web Sites

NASA's Beginners Guide to Propulsion
This web site provides background information for teachers on basic propulsion.
http://www.grc.nasa.gov/WWW/K-12/airplane/bgp.html

NASA's Beginners Guide To Model Rockets
This web site provides background information for teachers on basic rocketry.
http://www.grc.nasa.gov/WWW/K-12/airplane/bgmr.html

NASA Kids
This site is an extraordinary site for students and teachers. Kids can play games, learn what they would weigh on another planet, print coloring pages, explore space and rockets, and much more!
http://kids.msfc.nasa.gov/

Amazing Space: Gravity
Play “Planet Impact” and learn how a planet’s gravity affects a comet path.
http://amazing-space.stsci.edu/capture/gravity/

Amazing Space
Visit this web site for a wealth of information and resources. Games, information, pictures, and lesson plans are available for just about everything that has to do with space, from black holes to the electromagnetic spectrum.
http://amazing-space.stsci.edu/capture/
Activities and Worksheets

In the Guide

There’s a Micro In My Gravity?
Two fun activities to learn about microgravity. .. 48

All Aboard for Destinations Unknown
Design and build your very own spacecraft for imaginary space travel. 49

Rocket Go Round
Make a rocket pinwheel to understand the action-reaction principle of rockets. .. 50

Rocket Racer
Make a race car to learn about Newton’s Third Law of Motion. 51

There’s an Ant In Your Acid
Investigate methods of increasing rocket power by manipulating temperature and surface area. ... 53

Answer Key .. 54

On the Web

3–2–1 Launch!
Design, build, and test paper pencil rockets.

Newton’s Car
Build a a car to demonstrate Newton’s Second Law of Motion.
There’s a Micro in My Gravity? Two Fun Activities

Problem
To understand microgravity*

At the Drop of a Cup

Procedure
1. Using a sharp pencil or scissors, punch a small hole in the side of the cup near its bottom.
2. Hold your thumb over the hole as you fill it with water. What will happen if you move your thumb?
3. Hold the cup over a large tub and remove your thumb. Observe and record your observations in your science journal.
4. Hold your thumb over the hole again and fill cup with water.
5. Hold the cup up as high as you can. Drop the filled cup into the tub. Record your observations.

Conclusion
1. What happened when you removed your thumb in step 2? Why?
2. What happened when you dropped the cup? Why?

The Weight is Falling

Procedure
1. Place a heavy book on a bathroom scale and record the book’s weight in your science journal.
2. Hold the scale with the book on it 1 meter over a large pillow or piece of foam.
3. Let go of the scale so that the book and the scale fall together. As it drops, quickly observe the book’s weight. Record.

Conclusion
2. Using what you have observed in these two activities, explain why astronauts experience microgravity in space.
3. Where can you experience microgravity?

* Microgravity Defined

The prefix micro- (m) derives from the original Greek mikros meaning small. By this definition, a microgravity environment is one in which the apparent weight of a system is small compared to its actual weight due to gravity. Quantitative systems of measurement, such as the metric system, commonly use micro- to mean one part in a million. Using that definition, the apparent weight experienced by an object in a microgravity environment would be one-millionth (10^-6) of that experienced at Earth’s surface. The use of the term microgravity in this guide will correspond to the first definition.

Materials
- foam cup
- pencil or scissors
- water
- large tub or basin
- science journal

- bathroom scale
- heavy book
- large pillow or foam
- science journal
All Aboard for Destinations Unknown

Purpose
To build a model space ship to simulate travel to space

Procedure
1. You are in charge of the first tourist space mission and it is your job to design a spacecraft that will be comfortable, safe, and practical for trips into space.
2. Below find some suggestions on how to construct a spacecraft, but be creative!
 a. Stack three or four boxes of different sizes on top of each other. Cut a door in the biggest box and a hole in the top of it. Fasten a second, slightly smaller box over this box with the open side down. Make a cone from poster board and attach it to the top of the space shuttle. Paint the space shuttle with white paint and draw a NASA insignia on the side.
 b. Use a large refrigerator box with a cone-shaped roof attached. Cut windows in the side of the box and cover with clear plastic. Attached shuttle wings on the sides. Paint.
 c. For inside your space shuttle use Velcro® to attach items such as pens, small notebooks, glasses, telescopes, silverware, mirrors, toothbrushes, combs, etc.
3. Design life support gear for astronauts to wear while working outside the spacecraft. You might want to use plastic milk cartons with aquarium tubing attached to a 2-liter bottle (oxygen tank) to create space helmets. Also, don't forget to provide a way for the astronauts to tether themselves to the spacecraft while working outside. We wouldn't want to lose anyone!
4. Share and enjoy your spacecraft with your classmates! If possible, find music that is appropriate for “space” travel and play it to soothe the passengers.

Extension
1. Design a brochure describing the first tourist flight and the destinations that are planned for the trip. Be sure to include activities for your travelers while they are on their long journey.

Materials
- boxes of various sizes
- Velcro®
- poster board
- markers
- glue
- 2-liter bottles
- milk cartons
- various objects as needed
Rocket Go Round

Problem
To understand the action-reaction principle of a rocket

Background
Newton’s Third Law of Motion states that every action is accompanied by an opposite and equal reaction.

Procedure
1. To stretch out the balloon, blow it up and release the air several times.
2. Place the end of the straw without the bend inside the open neck of the balloon.
 See diagram 1.
3. Use a small piece of tape to seal the balloon to the straw. The balloon should inflate when you blow through the straw.
4. Bend the straw at a right angle. See diagram 2.
5. Place the straw and balloon onto one of your fingers and move it around until it balances.
6. At the balance point (the place where your finger is touching the straw when it balances), push the straight pen through the straw.
7. Push the straight pen into the center of the eraser and finally into the wood of the pencil. See diagram 3.
8. Spin the straw a few times to loosen up the hole the pen made in the straw.
10. Once it spins freely, blow up the balloon and hold your finger over the end of the straw to keep the air from escaping.
11. Hold the pencil away from your body and then release the straw.

Materials
- wooden pencil with eraser
- straight pen
- round balloon
- flexible straw
- tape
- safety goggles

Conclusion
1. In which direction did the straw and balloon spin? Why?
2. Use Newton’s Third Law to explain what happened in this experiment.
Rocket Racer

Purpose
To observe Newton's Third Law of Motion to understand the principles behind rockets

Procedure
1. Using scissors cut out the wheel patterns.
2. Place the patterns on the foam meat tray and trace around the edges.
3. Use the metric ruler to draw a rectangle 7.5 cm by 18 cm on the foam meat tray. See diagram 1.
4. Blow up the balloon a few times to stretch it out.
5. Place the end of the straw with the bend inside the open neck of the balloon.
6. Use a small piece of tape to seal the balloon to the straw. The balloon should inflate when you blow through the straw.
7. Lay the straw in the center of the rectangle, having the end without the balloon hanging 1 cm over the front edge. Bend the straw upward at the bendable section and tape the entire straw into place. See diagram 2.
8. Push the pins through the hubcaps into the wheels and then into the edges of the rectangle. See diagram 3.
9. Make a starting line by placing a piece of masking tape on the floor.
10. Blow up the balloon and pinch the end of the straw to hold in the air.
11. Place the racer on the floor at the starting line and release. See diagram 4.
12. Measure the distance that your racer traveled and record in your science journal.
13. Discuss how you could improve your Rocket Racer so that it might go farther.
14. Make any changes decided upon and repeat steps 10-13.
15. Repeat for two more trials.
16. Find the average distance your Rocket Racer traveled in all four trials.

Conclusion
1. Did your Rocket Racer travel the same distance each time?
 Why or why not?
2. Explain how the Rocket Racer got its power to travel.
3. What could you do to improve your Rocket Racer?

Materials
- foam meat tray
- tape
- flexible straw
- scissors
- 4 pins
- marker
- rounded balloon
- metric ruler
- pencil
- wheel pattern (p. 52)
- masking tape
Rocket Racer (concluded)

Wheel Patterns
Crosses mark the centers

Hubcap Patterns
Crosses mark the centers
Problem
To investigate methods of increasing the power of rocket fuels by manipulating surface area and temperature

Background
When rocket propellants (fuel) burn faster, the amount (mass) of exhaust gases expelled increases and so does the speed at which gases accelerate out of the rocket nozzle. Newton’s Second Law of Motion states that the force of a rocket engine is directly proportional to the mass expelled times its acceleration.

Procedure
1. Fill each jar with 50 ml of tap water.
2. Put on your goggles.
3. Predict how long it will take for the tablet to dissolve in the water. Record your prediction in the chart below.
4. Drop one of the tablets into the first jar and using a clock with a second hand, time how long it takes for the tablet to dissolve. Record in the chart below.
5. Place a second tablet on a piece of paper and wrap it around the tablet. Use a wooden block or other heavy item to crush the tablet into small pieces.
6. Predict how long it will take for the tablet to dissolve in the water. Record your prediction.
7. Drop the crushed tablet into the second jar and time how long it takes to dissolve. Record.
8. Empty both jars and rinse thoroughly.
9. Fill the first jar with 50 ml of very warm water.
10. Place a thermometer in the jar and wait a minute or two. Record the temperature reading on the thermometer in the chart below.
11. Predict how long it will take for the tablet to dissolve and record.
12. Drop the tablet into the warm water and time how long it takes to dissolve. Record.
13. Add 50 ml of very cold water to the second jar and repeat steps 10-12.

<table>
<thead>
<tr>
<th></th>
<th>Prediction</th>
<th>Actual Dissolving Time</th>
<th>Observation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap Water Whole Tablet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tap Water Crushed Tablet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion
1. Which tablet dissolved faster, the whole tablet or the crushed tablet? Why?
2. Which tablet dissolved faster, the one in warm water or the one in cold water? Why?
3. Using what you learned from this experiment, how could you make the tablet dissolve even faster?
4. How would this information help scientists make rockets go faster?

Materials
effervescent antacid tablets (4 per group)
2 glass jars (same size)
tweezers or forceps
scrap paper
watch or clock with second hand
thermometer
goggles
water (warm and cold)
metric-measuring cup
wooden block
There's a Micro in My Gravity?

A Drop of a Cup
1. When you removed your thumb, the water poured out of the hole in the cup because the force of gravity pulled the water down toward the Earth.
2. When you dropped the cup, the water did not come out the hole because the water was in a state of freefalling. Even though the water stayed in the cup, it was still attracted to the Earth by gravity and ended up in the same place that the water did in the first experiment!

The Weight is Falling
1. When you dropped the book and the scale together, the weight went to zero because both the book and the scale were falling toward the Earth at the same time, creating microgravity.
2. Astronauts in space and the space shuttle are both falling toward Earth at the same rate of speed. The freefall creates microgravity and allows the astronauts to "float."
3. Answers will vary but might include roller coaster rides, springboard (diving), and elevators.

Rocket Go Round
1. The balloon spun in the opposite direction of the air coming out the end of the straw.
2. The balloon produces an action by squeezing on the air inside, causing it to rush out the straw. The air, traveling around the bend in the straw creates a reaction force at a right angle to the straw. The result is that the balloon and straw spin around the pin.

Rocket Racer
1. Answers will vary, but most likely the Rocket Racer did not travel the same distance each time. The difference in distance could have been due to different amounts of air being used to blow up the balloons or variances in the wheels (roundness, smooth edges, and so on).
2. The Rocket Racer is propelled along the floor according to the principle stated in Newton's Third Law of Motion, "For every action there is an opposite and equal reaction." Because the balloon is attached to the car, the force of the air expelling from the balloon pulls the car along.

There's an Ant In Your Acid
1. The crushed tablet dissolved faster because when you crushed the tablet, you increased the surface area. Increasing the surface area increases its reaction rate with the water.
2. The tablet in warm water dissolved faster because tablets in warm water react more quickly than tablets in cold water. The heat helps to speed up the reaction.
3. A combination of a crushed tablet and warm water would provide the faster way to dissolve the tablet.
4. In a rocket, scientists can make the rocket's thrust greater by increasing the burning surface area of its propellant and by adding heat or preheating the propellant.

3. Answers will vary but might include smoothing out the edges of the wheels, blowing the balloon up with more air, using different materials, and so on.

Answer Key
As the tree house detectives wind up their investigation, they call on Bianca to learn more about the stars and galaxies. Bianca is beginning her internship at the Arecibo Observatory in Puerto Rico. Arecibo is the home of the largest radio telescope in the world. Dr. D, who just happens to be at Arecibo, gives Bianca a tour of the night sky and helps her understand the differences among stars. The next day, Bianca meets with Dr. Daniel Altschuler, Dr. Tapasi Ghosh, and Dr. Jose Alonso, who help her understand how a radio telescope works and how it is used to study the stars, planets, and other objects in the universe. After a successful internship and a great time in Puerto Rico, Bianca heads home to help the rest of the detectives wrap up their project and create an "out-of-this-world" vacation.
Objectives

The students will
• understand how a telescope works.
• understand the conditions necessary for life on planets outside our solar system.
• be able to identify two types of stars.
• be able to identify constellations.
• understand that stars are various colors.
• identify three types of galaxies.
• learn how a radio telescope works.
• learn the importance for searching for life in the universe.

Vocabulary

classification—a grouping of stars that has a shape resembling an animal, mythological character, or other object and thus is named for it
dwarf star—a star that in comparison to other stars gives off an ordinary or small amount of energy and has small mass and size
extraterrestrial—coming from or existing outside the Earth or its atmosphere
galaxy—a massive grouping of gas, dust, and stars in space held together by gravity
giant star—a late stage in a star’s life cycle in which the core has contracted and grown hotter, causing its outer layers to expand
nebula—a large cloud of gas and dust in space that is the beginning of a star

Radio telescope—an instrument that uses a large antenna to gather radio waves from space for use in studying space objects and communicating with artificial satellites and probes
radio waves—electromagnetic waves having long wavelengths; we use them to transmit voice, music, video, and data over distances
reflecting telescope—an optical instrument that uses a concave mirror, a flat mirror, and a convex lens to magnify distant objects
star—a ball-shaped gaseous celestial body (such as the Sun) of great mass that shines by its own light

Video Component

Implementation Strategy

The NASA SCI Files™ is designed to enhance and enrich the existing curriculum. Two to three days of class time are suggested for each segment to fully use video, resources, activities, and web site.

Before Viewing

1. Prior to viewing Segment 4 of The Case of the Galactic Vacation, discuss the previous segment to review the problem and what the tree house detectives have learned thus far. Download a copy of the Problem Board from the NASA SCI Files™ web site in the tree house section and have students use it to sort the information learned so far.

2. Review the list of questions and issues that the students created prior to viewing Segment 3 and determine which, if any, were answered in the video or in the students’ own research.

3. Revise and correct any misconceptions that may have been dispelled during Segment 3. Use tools located on the Web, as was previously mentioned in Segment 3.

4. Focus Questions—Print the questions from the web site ahead of time for students to copy into their science journals. Encourage students to take notes during the program to answer the questions. An icon will appear when the answer is near.
View Segment 4 of the Video

For optimal educational benefit, view The Case of the Galactic Vacation in 15-minute segments and not in its entirety. If you are viewing a taped copy of the program, you may want to stop the video when the Focus Question icon appears to allow students time to answer the question.

After Viewing

1. At the end of Segment 4, lead students in a discussion of the focus questions for Segment 4.
2. Have students discuss and reflect upon the process that the tree house detectives used to design their “out-of-this-world” vacation. The following instructional tools located in the educator’s area of the web site may aid in the discussion: Experimental Inquiry Process Flowchart and/or Scientific Method Flowchart.
3. Choose activities from the educator guide and web site to reinforce concepts discussed in the segment. Pinpoint areas in your curriculum that may need to be reinforced and use activities to aid student understanding in those areas.
4. Wrap up the featured online Problem-Based Learning investigation. Evaluate the students’ or teams’ final product, generated to represent the online PBL investigation. Sample evaluation tools can be found in the educator area of the web site under the main menu topic “Tools” by clicking on the “Instructional Tools.”
5. Have students write in their journals what they have learned about our solar system, the Moon, Mars, stars, galaxies, and/or the problem-solving process and share their entry with a partner or the class.

Resources

Books

Careers

- telescope operator
- atomic scientist
- biomedical engineer
- technician
- payload specialist
Resources (concluded)

Web Sites

NASA Star Child
This web site is a learning center for young astronomers written on two levels. Explore the solar system, universe, and other space stuff. This site is also offered in Spanish.

NASA’s Observatorium
This web site is full of Earth and space data with pictures of the Earth, planets, stars, and other cool stuff, as well as the stories behind the images. Students can play games and teachers can find a wealth of lesson plans and information.

NASA’s Astro-Venture
Transport yourself to the future and work for NASA as you search for and build a planet with the necessary characteristics for human habitation. Also available are student fact sheets, trading cards, classroom lessons, and much more.

NASA SpaceKids™
Visit this site to send your name to Mars, organize a star gazing party, learn about Solar Max, and much more. There is also a junior astronomer club, a teacher corner, and web cast of meteor showers to view.
http://spacekids.hq.nasa.gov/

Amazing Space: Galaxies
Visit this site to learn about galaxies. Click on “Galaxies Galore, Games and More” and learn about our Milky Way galaxy, play games, count galaxies in deep space, and much more.
http://amazing-space.stsci.edu/capture/galaxies/

New Views of the Universe
The companion site to Hubble Space Telescope: New Views of the Universe, a Smithsonian traveling exhibition. This web site takes visitors on a journey into Hubble’s amazing universe through cool pictures, interactives, and movies.
http://hstexhibit.stsci.edu

The Hubble Telescope
Share in Hubble’s remarkable discoveries with the latest in Hubble news, pictures, information, and resources.
http://hubble.stsci.edu/
Activities and Worksheets

In the Guide

Counting Your Lucky Stars
Sample a star field to estimate the number of stars in the universe.60

Just a Wobble Away
Create a solar system to learn how astronomers identify new planets in other star systems. ..62

Pictures in the Sky
Create constellation viewfinders and learn to recognize star patterns.63

No Planets in the Planetarium
Create a classroom planetarium. ...65

Galaxy Go Round
Create your own mini Milky Way Galaxy to understand its movement.66

Hello! Anyone Out There?
Create your own messages to send into space. ..67

Lost in Space
Search for the astronomy terms in this spacey word find. ..68

Crossing Space Puzzle
Create your own crossword puzzle. ..69

Answer Key ..70

On the Web

Galaxies Galore
Create mini galaxies to learn the three basic shapes of galaxies.

Signals from Space
Look for radio waves to understand how astronomers search for intelligent extraterrestrial life.
Counting Your Lucky Stars

Problem
To understand how astronomers use sampling to estimate the number of stars in the universe

Background
There are two principal ways of gathering data: using census (counting) or sampling. Sometimes it is impractical to count every single item such as each character on a classified ad page in the newspaper. Instead, you can count the number of characters in a small area and then mathematically calculate an estimate of the total number on the page. This method is called sampling. Astronomers use sampling to estimate the number of stars in a galaxy and even in the universe.

Procedure
1. Observe the Star Field Sheet and estimate the number of stars it contains. Record your estimate in the chart below.
2. On the Star Field Sheet, cut out the sampling window along the solid lines.
3. Fold the window in half, with the pattern lines on the outside, and cut along the dashed lines. Unfold the window.
4. Hold the window about 30 cm above the Star Field Sheet and drop. Make sure the window lands completely within the boundaries of the star field. If not, drop the window again.
5. Count the number of stars within the window, being careful not to bump or move the window. Count any stars that have at least 50% of their area in the window. Record the number of stars in the chart below.
6. Repeat steps 3-5 for two more trials.
7. Average the number of stars sampled and record.
8. Look at the Star Field Sheet and count the number of squares that make up the star field.
9. Multiply the number of squares in the star field by the average number of stars you counted in your samplings.
10. To find out how close your sampling is to the actual number of stars, divide the squares among your classmates and have each person count the stars in his/her square. Record in a class chart and find the sum of all the squares.

Materials
- Star Field Sheet (p. 61)
- pencils
- scissors
- science journal

Conclusion
1. How did your prediction compare to the approximate number of stars determined by sampling?
2. How did the approximate number of stars determined by sampling compare to the actual number of stars?
3. Why would astronomers use sampling to estimate the number of stars in the night sky?
4. What could you do to improve the accuracy of the sampling?
5. How else could sampling be used?

<table>
<thead>
<tr>
<th></th>
<th>Prediction</th>
<th>Average</th>
<th>Number of squares in the Star Field</th>
<th>Approximate Number of Stars in Star Field</th>
<th>Actual Number of Stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiply average number of stars by number of squares.

The Case of the Galactic Vacation
Counting Your Lucky Stars (concluded)

Extension

Conduct this experiment using the classified ad section of a local newspaper. Instead of stars, the students will be determining the number of characters on a page. Spaces don't count. To determine the actual number of characters on the page, cut the page into enough pieces for all students to have one and have them count the characters in their own sections.

Star Field Sheet
Just a Wobble Away

Problem
To learn how astronomers locate planets in other star systems

Procedure
1. Loosely tie one end of the string around a drinking straw so that the knotted end slides back and forth along the straw.
2. Roll the clay to form a ball the size of a golf ball (represents a star).
3. Place the ball of clay on the end of the straw.
4. Roll the clay to form a ball the size of a marble (represents a planet).
5. Place the ball on the other end of the straw.
6. Due to the difference in the amount of clay, one side of the straw is heavier than the other side. Therefore, you will need to find the balance point for the string. Hold the free end of the string in one hand and move the knotted end of the string toward the outer edge until the straw with the clay balances.
7. Working with your partner, hold the string by the free end and let the straw spin freely. Have your partner at eye level to observe the spinning straw. Record observations.
8. Repeat, but this time have your partner stand approximately 3-4 meters away and observe the straw as it spins. Record observations.
9. Have your partner hold a second drinking straw vertically at arm's length between his/her eye and the spinning straw. Observe and record.
10. Repeat, having your partner hold the string while you observe.

Conclusion
1. What do the straw and clay represent?
2. What did you observe at eye level? From across the room? With the second straw?
3. If a planet is near a star, will it be easy to detect? Why or why not?
Pictures in the Sky

Purpose: To learn to recognize star patterns called constellations

Teacher Note: Number of canisters will vary, depending on how the activity is completed. It can be completed either in groups of four, with each student constructing four constellation finders, or each student can construct one.

Procedure:
1. In your group divide the constellation patterns among you.
2. Using scissors, cut out the constellation patterns on the dotted line.
3. Place a pattern over the bottom of the film canister to align the solid circle with the outside rim of the canister.
4. Tape into place.
5. Using a pushpin, punch a small hole through the paper and the canister for each star in the pattern.
6. Hold the film canister to the light and look through it to make sure that you have punched the holes completely and light is seen through each.
7. Using a dot sticker, create a label for the canister with the name of the constellation and place it on the side of the canister.
8. Remove the paper from the canister.
9. Repeat steps 3-8 for any remaining constellation patterns.
10. Choose one of the canisters, read the name, and look through it to try to memorize the pattern. Slowly turn the canister counterclockwise and observe.
11. Exchange canisters within your group. Practice identifying the constellations.

Conclusion:
1. How did turning the canister affect the appearance of the constellation?
2. Why would constellations look different at different times of the night?

Extension:
1. To have a larger viewing area, make a constellation viewfinder out of a shoe box and punch the constellations in black card stock paper that can be inserted in one end of the box (cut out a small section on one end of the box).
2. Organize a star party and observe the night sky to see how many constellations you can identify.
3. Contact your local astronomy club and arrange for volunteers to help students observe the sky with the use of telescopes.

Materials:
- 16 black 35-mm film canisters
- Constellation patterns (p. 64)
- scissors
- tape
- pushpin
- dot stickers (optional)
- science journal
Pictures in the Sky (concluded)

Constellation Patterns

URSA MAJOR, the Great Bear

SCORPIUS, the Scorpion

ORION, the Hunter

TAURUS, the Bull

PEGASUS, the Flying Horse

URSA MINOR, the Little Bear

CASSIOPEIA, the Queen

PISCES, the Fishes

LEO, the Lion

SAGITTARIUS, the Archer

GEMINI, the Twins

BOOTES, the Herdsman

CYGNUS, the Swan

PERSEUS

CANIS MAJOR, the Big Dog

HERCULES
No Planets in the Planetarium

Problem

To create a classroom planetarium for students to observe a “night sky”

Procedure

1. Fold tarp in half, lining up the sides as evenly as possible.
2. Using strong tape, such as duct tape, tape the two pieces of tarp together on both of the shorter sides of the tarp. See diagram 1.
3. On the longer side of the tarp, tape the edges together, leaving an opening large enough to fit a box fan plus 1 meter. See diagram 2.
4. Using a star chart, choose a portion of a night sky that you would like for the students to observe in the planetarium. You will not be able to create all of the constellations, so you might want to pick those that are more easily identified and recognized by students.
5. Use a permanent marker to draw the constellations on the outside of the top layer of the planetarium. Place the name of the constellation next to it.
6. With a pushpin, punch a hole through the top layer of the tarp at each star in the constellations.
7. If needed for better viewing, use a sharpened pencil to enlarge the holes slightly.
8. Once the constellations are completed, place a box fan at the far left of the opening in the tarp so that the air from the fan is blowing in to create a bubble. See diagram 3.
9. Secure the tarp by taping the top layer of the tarp to the top of the box fan.
10. Crawl into the tarp bubble and view the stars. Widen holes as necessary.
11. Provide star charts for the students and invite them to observe a night sky in the planetarium. This activity is best if a limited number of students go in at one time.

Extension

1. Invite parents to a “Star Party” and have the students give tours of the night sky.
2. Have the students research the constellations and identify the stars within each grouping.
3. Have students research various folklore related to the constellations and create reports, posters, plays, or songs explaining the myths.

Materials

- large, black, thick, plastic tarp
- strong tape
- box fan
- star chart
- marker
- pushpin
Galaxy Go Round

Problem
To demonstrate the movement of the Milky Way Galaxy

Background
A galaxy is a cluster of stars, dust, and gas held together by gravity. Galaxies range in diameter from a few thousand to a half million light years. Large galaxies have more than a trillion stars, and small galaxies have fewer than a billion. Astronomers believe that there are billions of galaxies in the universe. Astronomers classify galaxies into three basic patterns: spiral, elliptical, and irregular. Elliptical galaxies contain mostly older stars and little or no gas to make new stars. They are ball or oval shaped and may have formed early in the universe’s history. Irregular galaxies are small and shapeless, but many are still actively making new stars. Spiral galaxies are easy to identify with sweeping “arms” that contain gas and dust that make new stars. Our galaxy, the Milky Way, is a spiral galaxy.

Procedure
1. Place the pan on a table and put a coin under the center of the pan. Make sure the pan can spin easily.
2. Pour about 2 cm of water into the pan.
3. Carefully sprinkle the paper holes in the center of the pan.
4. Spin the pan slowly. Observe the dots and draw your observations in your science journal.

Conclusion
1. What forms new stars?
2. What is the name of our galaxy?
3. Why are galaxies so hard to see in the night sky?

Materials
- round pan
- coin
- water
- paper holes from hole punch

- pan
- water
- table
- coin
- holes from hole punch swirling in water
Hello! Anyone Out There?

Problem
To create a message to be sent into space and to understand the difficulty in creating and interpreting the message.

Teacher Prep
Have the students bring in magazines about a week before the project. The magazines should have pictures that show all aspects of life on Earth such as landscapes, people (different cultures), wildlife, technology, and so on. Scan the magazines for appropriate content.

Background
In 1977, NASA launched two Voyager spacecraft to fly by the outer planets in our solar system. Because scientists and engineers knew that Voyagers’ paths would carry them beyond our solar system and hopefully, eventually among the stars, they placed an audio-video record onboard the craft with the “sights and sounds of Earth.” The disk contained 118 photographs, 90 minutes of music from all around the world, and greetings in almost 60 languages. The disk is like a “message in a bottle” set to drift in space as a token of humanity’s existence. As you might imagine, the committee given the task of selecting the images and music had lots of discussions on what to include, and they only had six weeks!

Throughout the history of man, we have tried to leave messages saying that “we were here.” You can see evidence in cave drawings and ancient stone tablets. It is often difficult to understand these messages and sometimes we never know what they mean. But when we decipher the messages, we are very excited to have another piece of our past unlocked.

Procedure
1. Your mission is to use 10 pictures from magazines to create a “we were here” message to be sent into space to any intelligent extraterrestrial life. This message needs to let other intelligent life know that we exist and what our world is like. Discuss the matter with your group members and come to an agreement on a message. You have 10 minutes.
2. Use scissors and cut out the chosen pictures. Decide how to arrange them on the large construction paper and glue them into place. You may not write any words on your message, only pictures. You have 10 minutes.
3. Decide upon a team name and write it on the back of the message.
4. On a sheet of notebook paper, write a paragraph summarizing the message you are trying to convey with your pictures. Put your team’s name at the top of the paper, then date and sign it, being sure to include all team members’ names. You have 10 minutes.
5. On the same day or a different day, imagine that you are intelligent extraterrestrial life. Your group will “intercept” a message by choosing one of the messages that have been completed.
6. As a group, try to make sense of the message and reach a consensus on what it says. Write a brief paragraph explaining what you think it is telling you. Remember that you know nothing about Earth and you can only use the pictures.
7. Once you are finished, share your findings with the class and then have the group who sent the message read its description. Compare the two messages.

Conclusion
1. How difficult was it to interpret the message?
2. What would have made it easier?
3. Would it be harder for a true extraterrestrial to understand a message sent from Earth than for an Earthling to understand a message sent by another Earthling? Why or why not?
4. What things might we have in common with other intelligent extraterrestrials?
Lost in Space

Word Bank
inner planet solar system axis satellite radio waves
light year Apollo gravity star galaxy
parallax Moon propulsion telescope

PNCRUSTXALLARAPPARATUM
URNMOSPSMGPSABEHAGUYIOA
TAOEAORPSWVCACXNROLODN
EBFTPUPERAOKMEICGIPNECT
RNSAIMLEOMLVHTIHBALCHTOL
CHEDLTOWAERAUXSELISENE
OKALOIIRRSINETIAIIIOVE
AJILIESNSDCJALPALLEUREN
PLSTTIDJYIBRSTERTORIRT
ORNTECIRSNDAESIESIEVATGI
LEONECIPTITEETHSALAREEA
LZIUICKIEHAXISREEPUNL
ONSDSHINMPRILTISSTITTL
YGLARSAAOOVUDDROCCYAI
KIJUNRTSRTRAIDNRNONHJKR
JSPYKOGALAXYYIIIPNBONA
HFOTJOERREOPELCELIIADE
PEREMGYAARTCKCIBATSTRY
UEPSRGSIDVZUUAEOISHICT
YKIEIITGADIBISBOLLIIIIH
TEVESBEKISRTHYOMJACONG
SIEMAIMOSCINYTCETETALI
DGWINRADIOWAVESINYIRPL
INNERPLANETKELFUROETEM
The Case of the Galactic Vacation

Crossing Space Puzzle

Create a crossword puzzle with the following terms and the grid below.

Vocabulary
- inner planets
- outer planets
- light year
- parallax
- solar system
- Moon phases
- axis
- gravity
- propulsion
- satellite
- star
- radio telescope
- galaxy

Add your own:

Across
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Down
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Counting Your Lucky Stars
1. Answers will vary.
2. Answers will vary.
3. Astronomers would use sampling to estimate the number of stars in the night sky because with billions of stars, it would be impossible to count them all in a person's lifetime.
4. Answers will vary but might include that the number of trials could be increased. The more trials, the better the estimate. Securing the window to the paper so that it does not move would also help to increase the accuracy of the sampling.
6. Sampling can be used in many ways, and some include counting populations of insects, estimating the number of people at a sporting event, and so on.

Just a Wobble Away
1. The straw and clay represent a solar system (star and planet).
2. At eye level there was very little movement. From across the room, the wobble was very difficult to see. The second straw makes it easier to see.
3. A planet near a star is difficult to detect because as a planet orbits a star, there is very little motion seen. It appears as only a slight wobble.

Pictures in the Sky
1. Turning the canister made the constellations appear upside down and sideways.
2. Even though the stars remain in the same relative position, the Earth is turning; therefore, to an observer on Earth, constellations appear to move around the sky throughout the night.

Galaxy Go Round
1. Gas and dust make new stars.
2. Our galaxy is the Milky Way Galaxy.
3. Galaxies are difficult to see in the night sky because they are so far away.

Hello! Anyone Out There?
1. Answers will vary.
2. Answers will vary but might include that it would have been easier if there were words that could be read and understood.
3. Yes. People who live on Earth have a good understanding of humans and our world. If we were to interpret a message from our own planet, we would at least have a background of information to build upon. Extraterrestrials would not have any information from which they could begin to understand the message. They might not know what a car is or even a cloud.
4. Answers will vary but might include things such as mathematical operations, prime numbers, the structure of atoms, engineering principals, knowledge of the universe, and so on.

Lost in Space Answers

On the Web
Signals from Space
1. Some reasons for static while listening to a radio when riding in a car are other electrical devices, power plants, lightning, power lines, poor connection, and so on.
2. Some sources of interference for astronomers are other space matter, television and radio broadcasting, microwave communications, the radio receiver itself, satellites, and so on.
3. Answers will vary.